Refine
Document Type
- Article (9)
- Conference Proceeding (2)
- Report (2)
- Book (1)
- Part of a Book (1)
- Other (1)
Is part of the Bibliography
- yes (16)
Keywords
- Active customer (1)
- Citizen energy community (1)
- Citizen energy cooperatives (1)
- Community energy (1)
- Cross-border (1)
- EU energy law (1)
- Energy system modelling (1)
- Homo sustinens (1)
- Menschenbilder (1)
- Nachhaltigkeit (1)
Institute
Im Rahmen dieser Untersuchung sollen folgende Fragen beantwortet werden:
- Was sind die entscheidenden Aspekte in der zukünftigen Entwicklung der Energieversorgung und des -verbrauchs im Landkreis Emsland?
- Welche Annahmen können für den Energieverbrauch im Zieljahr 2040 getroffen werden?
- Wie kann ein angemessener Beitrag des Landkreises Emslands zur klimaneutralen Energieversorgung Deutschlands quantifiziert werden?
- Welche Energieszenarien sind für den Landkreis Emsland im Jahr 2040 denkbar?
- Welche Empfehlungen lassen sich aus diesen Szenarien für Unternehmen, Politik und Verwaltung ableiten?
The energy transition involves various challenges. One key aspect is the decentralization of power generation, which requires new actors. In order to integrate these into the system in the best possible way, there are various approaches e.g. in cooperation in citizens' initiatives or cooperatives (Dorniok, 2016).
Cooperation in general can enable the implementation of certain business models or can increase profitability by the exploitation of economies of scale (Skovsgaard & Jacobsen, 2017; Theurl, 2010). Synergy effects result from the utilization of know-how, different technologies or resources of the partners involved to complement the own competencies and services (Eggers & Engelbrecht, 2005; Sander, 2009). Cooperation exists in various industries and enable the participating companies to compensate their size-related resource deficits (Glaister & Buckley, 1996; Todeva & Knoke, 2005). This creates the opportunity to develop innovations, open up new markets, exploit newly created economies of scale and share costs and risks (Franco & Haase, 2015). In agriculture, cooperation in the form of cooperatives have been of essential importance for a long time, especially with the aim of exploiting synergy effects (Bareille et al., 2017). In the field of renewable energy development, cooperation in form of citizen cooperatives make a significant contribution to the participation of citizens in political, social and financial aspects of the energy transition (Huybrechts & Mertens, 2014). Energy cooperatives are frequently discussed as a potential actor in the energy transition and are increasingly being established to advance the common interests of stakeholders. For example, the joint operation of decentralized power generation plants can involve new actors in the energy transition through regional cooperation (Walk, 2014).
Existing biogas plants in Germany need new business models after the 20-year Renewable Energy Sources Act feed-in tariff expires. For continued operation, a business model innovation is needed, which can be realized based on the different technical utilization pathways. Cooperation can have a significant impact on the profitability of the different business models, especially by exploiting synergy effects (Karlsson et al., 2019). In addition, cooperation can help to ensure that existing plants continue to operate at all.
Currently, the most widespread use of biogas in Germany is in the coupled generation of electricity and heat. Additionally, there is the possibility of upgrading biogas to biomethane or biogenic hydrogen path (Mertins & Wawer, 2022).
Different options for cooperative business models that exist in the biogas utilization pathways are presented. The focus is on explaining the advantages of a joint approach compared to single-farm business models and identifying the relevant actors. Subsequently, drivers and barriers for the different cooperative business models are identified and classified based on 20 semi-structured interviews with plant operators in the administrative district of Osnabrück. The aim is to identify drivers and barriers for cooperative post-EEG operation. As a result, political instruments are to be found that make it possible to involve relevant actors and thus stimulate the best possible continued operation from the point of view of the energy system. The results are structured according to the PESTEL analysis. This assigns drivers and barriers to the categories political, economic, sociocultural, technological, ecological and legal (Kaufmann, 2021). The analysis of the interviews is supplemented and validated by a literature review.
Drivers and barriers for cooperative business models are manifold and can vary mainly depending on the plant and the operator.
Drivers
• Political
o Promotion of renewable energies: reduce dependence on fossil (Russian) fuels
• Economic
o Expectation of synergies (information sharing, shared risk, economies of scale)
o Planning security (fixed supply or purchase contracts)
o Access to new markets (not accessible by single-farm business models)
o Cost savings by sharing infrastructure, technology
o Positive return expectation
• Sociocultural
o Motivating, innovative environment
o Lowers barriers to participation in new markets
o Target-oriented partnerships
o Better use of capacities and strengths
o Strengthening regional value creation
• Technological
o Economies of scale (efficiency)
o Available, mature technology
o Storable, transportable gas
o Well-developed infrastructure
• Ecological
o Increase in plant efficiency
o Reduction of greenhouse gas emissions
o Promotion of the circular economy by utilization of organic waste and agricultural residues
o Improving soil quality (fermentation residues as fertilizer)
Barriers
• Political
o Competition to other renewable energies
• Economic
o Uncertainty about future development of energy markets
o Disagreements between the cooperation partners
o Lack of flexibility due to longer-term contractual obligations
o Allocation of profits
• Sociocultural
o Cooperation with current competitor
o Cultural differences and lack of trust
o Acceptance by the general public (e.g. overproduction of maize)
• Technological
o Different technology that is difficult to combine
o Data protection
• Ecological
o Competition for agricultural land
o Use of monocultures
o Emissions from plant
o Pollution from transport
• Legal
o Legal requirements and regulations
o Unfavorable regulatory environment, e.g. long permitting process
One finding is that uncertainty is a major barrier for plant operators. This includes uncertainty about regulatory frameworks and political requirements, as well as about the general development of the energy markets. In addition, social factors such as lack of reliability and disagreement about revenue sharing are a potential barrier. A key driver for the implementation of cooperative business models is the expectation of synergy effects. In addition, operators are driven by a positive expectation of returns and the responsibility for securing the energy supply in times of crisis.
The drivers identified can now be used to develop strategies to advance cooperative business models. In particular, synergy effects should be exploited so that operators can benefit from cooperation. The advantages can also be highlighted and communicated to increase acceptance among the general public. Another important step is to reduce the barriers discussed above. In order to reduce social barriers in particular, it may be advisable to include an external partner in the cooperation, such as a municipal utility that operates an upgrading plant and concludes purchase agreements with the individual partners. In addition, it would be politically expedient to provide the operators with a clear framework for the future in order to reduce uncertainties. As a further aspect, knowledge transfer on new technologies and markets should take place.
In diesem Weißbuch stellen wir Methoden und Maßnahmen vor, die Unternehmen dabei unterstützen, ihre Energieversorgung auf erneuerbare Energien umzustellen, sich von den Preisschwankungen an den fossilen Weltmärkten unabhängiger zu machen und Entscheidungen für eine Klimastrategie für die nächsten Jahrzehnte zu treffen. Es werden drei mögliche Energiewelten der Zukunft skizziert. Informationen zum Thema Eigenstromerzeugung und zu Effizienzmaßnahmen werden anschaulich dargestellt sowie Links zu Fördermöglichkeiten genannt. Wir zeigen drei verschiedene Szenarien für die Energieversorgung von Unternehmen in der Zukunft auf. Sie geben Unternehmen eine Entscheidungshilfe für die eigene Klimastrategie. Die drei Szenarien haben Unterschiede, aber auch Gemeinsamkeiten.
Die EU hat im „Green Deal“ Maßnahmen festgelegt, damit Europa im Jahr 2050 klimaneutral ist. Deutschland hat seine Klimaziele zuletzt noch einmal verschärft und sich als Ziel die Klimaneutralität bis 2045 gesetzt. Um diese Ziele zu erreichen, stehen Industrie und Gewerbe vor der Herausforderung, ihre Energieversorgung auf erneuerbare Energien umzustellen und in Zukunft fossile Brenn- und Kraftstoffe zu ersetzen. Dies gilt für kleine und mittlere Unternehmen (KMU) ebenso wie für die Großindustrie. Es stellt sich also die Frage, wie Unternehmen sich mit Strom, Wärme, Dampf, Kälte und weiteren Energieformen versorgen. Welches ist dabei aus heutiger Sicht die günstigste Technologie? Zentrale Rollen hierbei spielen Energieeffizienzmaßnahmen und die Substitution fossiler durch regenerative Energieträger. Lösungen müssen sowohl technisch als auch ökonomisch realisiert werden können. Im Vorteil ist, wer heute schon eine unternehmensinterne Klimaschutzstrategie verfolgt und die ersten Schritte in Richtung Klimaneutralität unternimmt.
Das Stromsystem der Zukunft ist erneuerbar. In Deutschland wird auf die weitere Nutzung der Kernenergie nach dem Jahr 2022 verzichtet und auch ein Ausstieg aus der Stromerzeugung mit Kohle ist beschlossen. Durch die dezentralen erneuerbaren Energien ist die gesamte Elektrizitätswirtschaft im Umbruch. Der Wandel der Elektrizitätswirtschaft erfordert interdisziplinäre Betrachtungen, bei denen technische, politische, rechtliche und ökonomische Aspekte berücksichtigt werden. Dieses Buch vermittelt die erforderlichen Grundlagen, um in der Elektrizitätswirtschaft operativ und strategisch tätig zu werden und die nächste Stufe der Energiewende zu begleiten: War es in den letzten Jahrzehnten die Aufgabe, fluktuierende Einspeisungen aus erneuerbaren Energien in ein bestehendes Stromsystem zu integrieren, stellt sich nun in einem zweiten Schritt die Frage, wie Stromsysteme mit sehr hohen Anteilen erneuerbarer Energien ausgestaltet werden können. Die komplexen Zusammenhänge der Strommärkte werden verständlich dargestellt. Ganz bewusst wird auf eine mathematische Darstellung der Probleme weitestgehend verzichtet. Anhand einer Vielzahl konkreter Beispiele und Abbildungen wird anschaulich gezeigt, wie Stromsysteme mit sehr hohen Anteilen erneuerbarer Energien – bis zu 100 % – funktionieren können.
Biogas production is a relevant component in renewable energy systems. The paper addresses modeling approaches from an energy system, as well as from a process optimization, point of view. Model approaches of biogas production show different levels of detail. They can be classified as white, gray, and black box, or bottom-up and top-down approaches. On the one hand, biogas modeling can supply dynamic information on the anaerobic digestion process, e.g., to predict biogas yields or to optimize the anaerobic digestion process. These models are characterized by a bottom-up approach with different levels of detail: the comprehensive ADM1 (white box), simplifications and abstractions of AD models (gray box), or highly simplified process descriptions (black box). On the other hand, biogas production is included in energy system models. These models usually supply aggregated information on regional biogas potentials and greenhouse gas emissions. They are characterized by a top-down approach with a low level of detail. Most energy system models reported in literature are based on black box approaches. Considering the strengths and weaknesses of the integration of detailed and deeply investigated process models in energy system models reveals the opportunity to develop dynamic and fluctuating business models of biogas usage.
One challenge of the EU energy transition is the integration of renewable electricity generation in the distribution system. EU energy law proposes a possible solution by introducing “citizen energy communities” (Directive 2019/944/EU) which may be open for “cross-border participation”. This article proposes an innovative way of implementing such cross-border communities by linking distribution systems via a “switchable element”, a generation, storage, or consumption asset with a connection to each country. An optimization model has been developed to calculate the system cost savings of such a connection. Linking regions with complementary characteristics regarding electricity generation and demand via a switchable element leads to more efficient system utilization. Findings are relevant for the transposition of “citizen energy communities” in national laws.
Competition in the conversion of the gas grid : Is the future of biogas biomethane or hydrogen?
(2023)
Das Ziel des Beitrags ist es, die Bedeutung von aktiven Kundinnen und Kunden für ein unterstützendes Marketing Management hin zu einer nachhaltigen Entwicklung am Beispiel der Energiewirtschaft aufzuzeigen. Das Menschenbild des homo sustinens kann von besonderer Relevanz sein, um aktive Kundinnen und Kunden im Marketing Management zu verstehen. Dem homo sustinens zugrundeliegend, der sich am Leitbild der Nachhaltigkeit orientiert, ergeben sich vielfältige Ansatzpunkte für den Austauschprozess mit aktiven Kundinnen und Kunden. Sie können befähigt, instrumentalisiert, unterstützt, erzogen oder optimiert werden.