Refine
Document Type
- Article (4)
- Conference Proceeding (1)
Is part of the Bibliography
- yes (5)
Keywords
- Remote sensing (2)
- Clover (1)
- Convolutional neural networks (CNNs) (1)
- Feature selection (1)
- Grassland (1)
- Plant communities (1)
- Random forest (1)
- Semi-natural grasslands (1)
- Texture (1)
- Unmanned aerial vehicle (1)
Institute
- Fakultät AuL (5)
Semi-natural grasslands (SNGs) are an essential part of European cultural landscapes. They are an important habitat for many animal and plant species and offer a variety of ecological functions. Diverse plant communities have evolved over time depending on environmental and management factors in grasslands. These different plant communities offer multiple ecosystem services and also have an effect on the forage value of fodder for domestic livestock. However, with increasing intensification in agriculture and the loss of SNGs, the biodiversity of grasslands continues to decline. In this paper, we present a method to spatially classify plant communities in grasslands in order to identify and map plant communities and weed species that occur in a semi-natural meadow. For this, high-resolution multispectral remote sensing data were captured by an unmanned aerial vehicle (UAV) in regular intervals and classified by a convolutional neural network (CNN). As the study area, a heterogeneous semi-natural hay meadow with first- and second-growth vegetation was chosen. Botanical relevés of fixed plots were used as ground truth and independent test data. Accuracies up to 88% on these independent test data were achieved, showing the great potential of the usage of CNNs for plant community mapping in high-resolution UAV data for ecological and agricultural applications.
Classifying Stand Compositions in Clover Grass Based on High-Resolution Multispectral UAV Images
(2024)
In organic farming, clover is an important basis for green manure in crop rotation systems due to its nitrogen-fixing effect. However, clover is often sown in mixtures with grass to achieve a yield-increasing effect. In order to determine the quantity and distribution of clover and its influence on the subsequent crops, clover plants must be identified at the individual plant level and spatially differentiated from grass plants. In practice, this is usually done by visual estimation or extensive field sampling. High-resolution unmanned aerial vehicles (UAVs) offer a more efficient alternative. In the present study, clover and grass plants were classified based on spectral information from high-resolution UAV multispectral images and texture features using a random forest classifier. Three different timestamps were observed in order to depict the phenological development of clover and grass distributions. To reduce data redundancy and processing time, relevant texture features were selected based on a wrapper analysis and combined with the original bands. Including these texture features, a significant improvement in classification accuracy of up to 8% was achieved compared to a classification based on the original bands only. Depending on the phenological stage observed, this resulted in overall accuracies between 86% and 91%. Subsequently, high-resolution UAV imagery data allow for precise management recommendations for precision agriculture with site-specific fertilization measures.