Refine
Document Type
- Conference Proceeding (17)
- Article (1)
- Part of a Book (1)
Has Fulltext
- yes (19)
Is part of the Bibliography
- yes (19)
Keywords
Institute
- Fakultät IuI (18)
High Performance and Privacy for Distributed Energy Management: Introducing PrivADE+ and PPPM
(2018)
Distributed Energy Management (DEM) will play a vital role in future smart grids. An important and often
overlooked factor in this concept is privacy. This paper presents two privacy-preserving DEM algorithms
called PrivADE+ and PPPM. PrivADE+ uses a round-based energy management procedure for switchable and
dynamically adaptable loads. PPPM utilises on the market-based PowerMatcher approach. Both algorithms
apply homomorphic encryption to privately gather aggregated data and exchange commands. Simulations
show that PrivADE+ and PPPM achieve good energy management quality with low communication requirements
and without negative influences on robustness.
The Internet of Things (IoT) relies on sensor devices to measure real-world phenomena in order to provide IoT services. The sensor readings are shared with multiple entities, such as IoT services, other IoT devices or other third parties. The collected data may be sensitive and include personal information. To protect the privacy of the users, the data needs to be protected through an encryption algorithm. For sharing cryptographic cipher-texts with a group of users Attribute-Based Encryption (ABE) is well suited, as it does not require to create group keys. However, the creation of ABE cipher-texts is slow when executed on resource constraint devices, such as IoT sensors. In this paper, we present a modification of an ABE scheme, which not only allows to encrypt data efficiently using ABE, but also reduces the size of the cipher-text, that must be transmitted by the sensor. We also show how our modification can be used to realise an instantaneous key revocation mechanism.
Reliable information processing is an indispensable task in Smart City environments. Heterogeneous sensor infrastructures of individual information providers and data portal vendors tend to offer a hardly revisable information quality. This paper proposes a correlation model-based monitoring approach to evaluate the plausibility of smart city data sources. The model is based on spatial, temporal, and domain dependent correlations between individual data sources. A set of freely available datasets is used to evaluate the monitoring component and show the challenges of different spatial and temporal resolutions.
he development of context-aware applications is a difficult and error-prone task. The dynamics of the environmental context combined with the complexity of the applications poses a vast number of possibilities for mistakes during the creation of new applications. Therefore it is important to test applications before they are deployed in a life system. For this reason, this paper proposes a testing tool, which will allow for automatic generation of various test cases from application description documents. Semantic annotations are used to create specific test data for context-aware applications. A test case reduction methodology based on test case diversity investigations ensures scalability of the proposed automated testing approach.
Interpolation of data in smart city architectures is an eminent task for the provision of reliable services. Furthermore, it is a key functionality for information validation between spatiotemporally related sensors. Nevertheless, many existing projects use a simplified geospatial model that does not take the infrastructure, which affects events and effects in the real world, into account. There are various available algorithms for interpolation and the calculation of routes on infrastructure based graphs and distances on geospatial data. This work proposes a combined approach by interconnecting detailed geospatial data whilst regarding the underlying infrastructure model.
The wide distribution of smart phones allows to inform and interact with citizens in real-time, thus enabling the vision of smart cities. However, the reliability of smart city applications highly depends on the availability of appropriate, accurate, and trustworthy data. To increase the reliability of smart city applications, the European project CityPulse employs knowledge-based methods for monitoring and testing at all stages of the data stream processing and interpretation pipeline. During design-time testing validates the behaviour of applications with regard to different levels of quality of information. During run-time monitoring assesses the reliability of data streams, the plausibility of information, and the correct evaluation of extracted events. The monitored quality is exploited by fault recovery and conflict resolution mechanisms to ensure fault-tolerant execution of applications.
Our world and our lives are changing in many ways. Communication, networking, and computing technologies are among the most influential enablers that shape our lives today. Digital data and connected worlds of physical objects, people, and devices are rapidly changing the way we work, travel, socialize, and interact with our surroundings, and they have a profound impact on different domains,such as healthcare, environmental monitoring, urban systems, and control and management applications, among several other areas. Cities currently face an increasing demand for providing services that can have an impact on people’s everyday lives. The CityPulse framework supports smart city service creation by means of a distributed system for semantic discovery, data analytics, and interpretation of large-scale (near-)real-time Internet of Things data and social media data streams. To goal is to break away from silo
applications and enable cross-domain data integration. The CityPulse framework integrates multimodal, mixed quality, uncertain and incomplete data to create reliable, dependable information and continuously adapts data processing techniques to meet the quality of information requirements from end users. Different than existing solutions that mainly offer unified views of the data, the CityPulse framework is also equipped with powerful data analytics modules that perform intelligent data aggregation, event detection, quality
assessment, contextual filtering, and decision support. This paper presents the framework, describes ist components, and demonstrates how they interact to support easy development of custom-made applications for citizens. The benefits and the effectiveness of the framework are demonstrated in a use-case scenario
implementation presented in this paper.
In der Agrartechnik steht Landwirten und Lohnunternehmern eine steigende Anzahl digitaler Dienste zur Verfügung. Eine Modellierung, Ausführung und Steuerung von kooperativen Agrarprozessen ist aufgrund der verschiedenen, zueinander inkompatiblen IT-Lösungen nur eingeschränkt möglich. Es fehlt ein einheitlicher Standard zur Beschreibung dieser Prozesse. Der Beitrag stellt die Beschreibung von Agrarprozessen mit der Business Process Model and Notation (BPMN) dar. Domänenexperten (z.B. Landwirte, Lohnunternehmer, digitale Dienstanbieter) können kooperative Prozessabläufe plattformübergreifend gestalten, ohne dabei Prozessinterna mit anderen Akteuren teilen zu müssen. Als Brücke zwischen der kooperativen Prozessebene und der ausführenden Maschinenebene wird im Beitrag Message Queue Telemetry Transport (MQTT) eingesetzt: Mittels MQTT können Anweisungen und Informationen (z.B. Arbeitsaufträge, Statusdaten) zwischen beiden Ebenen in Echtzeit vermittelt und verarbeitet werden.
Die Unterstützung des Maschinenführers auf der Landmaschine durch digitale Dienste nimmt immer stärker zu. Die Darstellungsmöglichkeiten sind jedoch auf die Größe der eingesetzten Terminals beschränkt. Um Sichteinschränkungen aus der Kabine durch zusätzliche Terminals zu vermeiden, ist der Einsatz von Augmented Reality sinnvoll. Hier lassen sich die vorhandenen Informationen statisch oder dynamisch in das Sichtfeld des Landwirts einblenden. Doch erst durch die in diesen Beitrag gezeigte Overlay Darstellungsebene mit integrierten Informationen lässt sich das Potenzial der Augmented Reality vollständig nutzen.