Refine
Document Type
- Article (3)
- Conference Proceeding (1)
Language
- English (4)
Is part of the Bibliography
- yes (4)
Keywords
- Lemnaceae (3)
- Standardized production (2)
- Water lentils (2)
- Yield (2)
- Amino acid (1)
- Amino acids (1)
- Animal nutrition (1)
- Biomass production (1)
- Controlled environment (1)
- Cultivation (1)
Institute
- Fakultät AuL (4)
In order to produce protein-rich duckweed for human and animal consumption, a stable cultivation process, including an optimal nutrient supply for each species, must be implemented. Modified nutrient media, based on the N-medium for duckweed cultivation, were tested on the relative growth rate (RGR) and crude protein content (CPC) of Lemna minor and Wolffiella hyalina, as well as the decrease of nitrate-N and ammonium-N in the media. Five different nitrate-N to ammonium-N molar ratios were diluted to 10% and 50% of the original N-medium concentration. The media mainly consisted of agricultural fertilizers. A ratio of 75% nitrate-N and 25% ammonium-N, with a dilution of 50%, yielded the best results for both species. Based on the dry weight (DW), L. minor achieved a RGR of 0.23 ± 0.009 d−1 and a CPC of 37.8 ± 0.42%, while W. hyalina’s maximum RGR was 0.22 ± 0.017 d−1, with a CPC of 43.9 ± 0.34%. The relative protein yield per week and m2 was highest at this ratio and dilution, as well as the ammonium-N decrease in the corresponding medium. These results could be implemented in duckweed research and applications if a high protein content or protein yield is the aim.
Duckweeds can be potentially used in human and animal nutrition, biotechnology or wastewater treatment. To cultivate large quantities of a defined product quality, a standardized production process is needed. A small-scale, re-circulating indoor vertical farm (IVF) with artificial lighting and a nutrient control and dosing system was used for this purpose. The influence of different light intensities (50, 100 and 150 µmol m−2 s−1) and spectral distributions (red/blue ratios: 70/30, 50/50 and 30/70%) on relative growth rate (RGR), crude protein content (CPC), relative protein yield (RPY) and chlorophyll a of the duckweed species Lemna minor and Wolffiella hyalina were investigated. Increasing light intensity increased RGR (by 67% and 76%) and RPY (by 50% and 89%) and decreased chlorophyll a (by 27% and 32%) for L. minor and W. hyalina, respectively. The spectral distributions had no significant impact on any investigated parameter. Wolffiella hyalina achieved higher values in all investigated parameters compared to L. minor. This investigation proved the successful cultivation of duckweed in a small-scale, re-circulating IVF with artificial lighting.
Duckweeds are fast-growing and nutritious plants, which are gaining increased attention in different fields of application. Especially for animal nutrition, alternative protein sources are needed to substitute soybean meal. The current bottleneck is the standardized production of biomass, which yields stable quantities of a defined product quality. To solve this problem, an indoor vertical farm (IVF) for duckweed biomass production was developed. It consists of nine vertically stacked basins with a total production area of 25.5 m2. The nutrient solution, a modified N-medium, re-circulated within the IVF with a maximum flow rate of 10 L min−1. Nutrients were automatically added based on electrical conductivity. In contrast, ammonium was continuously supplied. A water temperature of 23 °C and a light intensity of 105 μmol m−2 s−1 with a photoperiod of 12:12 h were applied. During a 40-day production phase, a total of 35.6 kg of fresh duckweed biomass (equals 2.1 kg of dried product) was harvested from the IVF. On average, 0.9 kg day−1 of fresh biomass was produced. The dried product contained 32% crude protein (CP) and high levels of proteinogenic amino acids (e.g. lysine: 5.42 g, threonine: 3.85 g and leucine: 7.59 g/100 g CP). Biomass of this quality could be used as a protein feed alternative to soybean meal. The described IVF represents a modular model system for duckweed biomass production in a controlled environment and further innovations and upscaling processes.