Refine
Document Type
- Conference Proceeding (2)
- Article (1)
Is part of the Bibliography
- yes (3)
Keywords
- Amino acid (1)
- Animal nutrition (1)
- Lemnaceae (1)
- Standardized production (1)
- Upscaling (1)
- Water lentils (1)
Institute
- Fakultät AuL (3)
Duckweeds are fast-growing and nutritious plants, which are gaining increased attention in different fields of application. Especially for animal nutrition, alternative protein sources are needed to substitute soybean meal. The current bottleneck is the standardized production of biomass, which yields stable quantities of a defined product quality. To solve this problem, an indoor vertical farm (IVF) for duckweed biomass production was developed. It consists of nine vertically stacked basins with a total production area of 25.5 m2. The nutrient solution, a modified N-medium, re-circulated within the IVF with a maximum flow rate of 10 L min−1. Nutrients were automatically added based on electrical conductivity. In contrast, ammonium was continuously supplied. A water temperature of 23 °C and a light intensity of 105 μmol m−2 s−1 with a photoperiod of 12:12 h were applied. During a 40-day production phase, a total of 35.6 kg of fresh duckweed biomass (equals 2.1 kg of dried product) was harvested from the IVF. On average, 0.9 kg day−1 of fresh biomass was produced. The dried product contained 32% crude protein (CP) and high levels of proteinogenic amino acids (e.g. lysine: 5.42 g, threonine: 3.85 g and leucine: 7.59 g/100 g CP). Biomass of this quality could be used as a protein feed alternative to soybean meal. The described IVF represents a modular model system for duckweed biomass production in a controlled environment and further innovations and upscaling processes.
Duckweeds are promising plants with a variety of possible applications in the future, such as human and animal nutrition, biotechnology, or wastewater treatment. Protein contents of up to 45 % with an amino acid distribution close to WHO recommendations, starch contents of up to 65 % in the turions (both based on dry weight) and fast growth rates make these plants highly interesting. To achieve consistently high yields of defined product quality, a standardized production process is essential. The concept of re- circulating indoor vertical farming (IVF) offers a solution for year-round cultivation, independent of climatic conditions, optimizing space and resource use. At Osnabrück University of Applied Sciences, Germany, an advanced IVF system for duckweed biomass production has been established (Petersen et al., 2022). Recent innovations in this system include: Technical management innovation: A newly developed controller was installed in a second re-circulating IVF system for duckweed biomass production, improving uniformity and user- friendliness in growth parameter management through a single software solution. Nutrient management innovation: Nutrient supply in a re-circulating IVF based on the electrical conductivity can lead to nutrient imbalances over time, adversely affecting duckweed growth and quality. The implementation and adaptation of a single nutrient control and dosing system may be a solution to address these imbalances. These advancements represent important steps toward an easier and more consistent IVF system operation and enhancing the reliability of duckweed yield and biomass quality.
Vor den Herausforderungen traditioneller agrarischer Produktionsmethoden, wie Klimawandel und Ressourcenknappheit, bietet die vertikale, hydroponische Pflanzenproduktion in Indoor Vertical Farms (IVF) in urbanen Räumen innovative Lösungsansätze. Rezirkulierende hydroponische Systeme stehen jedoch vor der Herausforderung langfristig stabiler Nährstoffungleichgewichte bei konstantem Leitfähigkeitswert (EC-Wert), wie Untersuchungen an Süßkartoffeln (Ipomoea batatas) zeigen. In einem Versuchsaufbau wurden vier unabhängige Nährstoffkreisläufe mit je 12 Süßkartoffelpflanzen und einer modifizierten Hoagland-Nährlösung in einer IVF kultiviert. Die Pflanzen wurden über 91 Tage bei einer 16-stündigen Photoperiode, 23/18°C (Tag/Nacht) kultiviert. Die durchschnittlichen Erträge betrugen 1,4 kg Knollenmasse und 173 g Blattmasse pro Pflanze. Die Ergebnisse belegen, dass ohne regelmäßigen Austausch der Nährlösung die Stabilität der Makronährstoffkonzentrationen, insbesondere der Stickstofffraktionen, nicht gewährleistet werden kann. Dies kann zu einer Über- oder Unterversorgung einzelner Nährstoffe führen, was potenziell die Produktqualität und -menge beeinträchtigt und eine Innovation der Nährstoffregelung unablässig macht. Das Projekt Nutrient+Ctrl.IVF zielt darauf ab, hydroponische Systeme effizienter zu gestalten, indem ISFET-Sensoren für die automatisierte Messung der Nitrat-, Kalium- und Ammoniumkonzentrationen validiert und in eine Steuerungselektronik integriert werden. Diese Technologie ermöglicht die präzise Messung und bedarfsgerechte Regelung der Makronährstoffkonzentrationen. So kann ein Nährstoffverlust durch Austauschen von Nährlösung minimiert und die Ressourcennutzung unabhängig von der Kulturdauer nachhaltig optimiert werden. Die Validierung dieses Systems erfolgt an den Modellkulturen Süßkartoffel und Wasserlinse (Lemna minor).