Fakultät IuI
Refine
Document Type
- Conference Proceeding (25) (remove)
Keywords
- LiDAR (3)
- Gazebo (2)
- Robot operating system (ROS) (2)
- Simulation and Modeling (2)
- Agricultural Automation (1)
- Agricultural streering system (1)
- BPMN (1)
- Business Process Modeling (1)
- DMN (1)
- DTNs (1)
The usage of high-level synthesis (HLS) tools for FPGAs has increased significantly over the last years since they matured and allow software programmers to take advantage of reconfigurable hardware technology.
Most HLS tools employ methods to optimize for loops, e. g. by unrolling or pipelining them. But there is hardly any work on the optimization of while loops. This comes at no surprise since most while loops have loop-carried dependences involving the loop condition which result in large recurrence cycles in the dataflow graphs. Therefore typical while loops cannot be parallelized or pipelined.
We propose a novel transformation which allows to optimize while loops nested within a for loop. By interchanging the two loops, it is possible to pipeline (and thereby parallelize) the inner loop, resulting in a reduced execution time. We present two case studies on different hardware platforms and show the speedup factors - compared to a host processor and to an unoptimized hardware implementation - achieved by our while loop optimization method.
This paper presents an optimized algorithm for estimating static and dynamic gait parameters. We use a marker- and contact-less motion capture system that identifies 20 joints of a person walking along a corridor.
Based on the proposed gait cycle detection basic metrics as walking frequency, step/stride length, and support phases are estimated automatically. Applying a rigid body model, we are capable to calculate static and dynamic gait stability metrics. We conclude with initial results of a clinical study evaluating orthopaedic technical support.
he development of context-aware applications is a difficult and error-prone task. The dynamics of the environmental context combined with the complexity of the applications poses a vast number of possibilities for mistakes during the creation of new applications. Therefore it is important to test applications before they are deployed in a life system. For this reason, this paper proposes a testing tool, which will allow for automatic generation of various test cases from application description documents. Semantic annotations are used to create specific test data for context-aware applications. A test case reduction methodology based on test case diversity investigations ensures scalability of the proposed automated testing approach.
With the increasing size and complexity of embedded systems, the impact of software on energy consumption is becoming more important. Previous research focused mainly on energy optimization at the hardware level. However, little research has been carried out regarding energy optimization at the software design level. This paper focuses on the software design level and addresses the gap between software and hardware design for embedded systems. This is achieved by proposing a framework for software design patterns, which takes aspects of power consumption and time behavior of the hardware level into account. We evaluate the expressiveness of the framework by applying it to well-known and novel design patterns. Furthermore, we introduce a dimensionless numerical efficiency factor to make possible energy savings quantifiable.
Optimised Nutrient Recovery from Biogas Digestate by Solid/Liquid Separation and Membrane Treatment
(2019)
Anaerobic digestion products of agricultural biogas plants are characterised by high nitrogen, phosphorus, and potassium content. In three scale-up steps, a membrane based digestate treatment process of solid-liquid-separation, ultrafiltration, and reverse osmosis for nutrient recovery was investigated. Lab-scale trials delivered a very good understanding of fluid properties and subsequent ultrafiltration performance, which is the limiting process step in terms of energy demand and operation costs. In semi-technical experiments, optimisation, and design parameters were developed, which were subsequently applied to pilot-scale tests at two full-scale biogas plants. The process optimisation resulted in 50 % energy reduction of the ultrafiltration step. About 36 % of the sludge volume was recovered as dischargeable water, 20 % as solid N/P-fertiliser, and 44 % as liquid N/K-fertiliser.
This article proposes the concept of a simulation framework for environmental sensors with multilevel abstraction in agricultural scenarios. The implementation case study is a simulation of a grain-harvesting scenario enabled by LiDAR sensors. Environmental sensor models as well as kinematics and dynamic behavior of machines are based on the robotics simulator Gazebo. Models for powertrain, machine process aggregates and peripheral simulation components are implemented with the help of MATLAB/ Simulink and with the robotics middleware Robot Operating System (ROS). This article deals with the general concept of a multilevel simulation framework and in particular with sensor and environmental modeling.
Simulation von Laserscannern in Pflanzenbeständen für die Entwicklung umfeldbasierter Funktionen
(2018)
Es werden drei Modellierungsansätze zur Simulation von Laserscannern in Pflanzenbeständen für die Entwicklung umfeldbasierter Fahrzeugfunktionen beschrieben. Das Sensorsignal der Distanzmessung wird dabei anhand realer Messwerte oder phänomenologisch und auf der Basis empirisch ermittelter Kennwerte in Abhängigkeit von objekt- und sensorspezifischen Einflussfaktoren abgebildet. Basierend auf den Methoden zur Simulation von Distanzmesssystemen der Open Source Simulationsumgebung Gazebo wurden die Modellierungsansätze als spezifische Sensor- und Umfeldmodelle implementiert. Die Modelle wurden insbesondere für den Einsatz an mobilen landwirtschaftlichen Arbeitsmaschinen und für die Anwendung in der Getreideernte optimiert.
This paper describes the development and test of a novel LiDAR based combine harvester steering system using a harvest scenario and sensor point cloud simulation together with an established simulation toolchain for embedded software development. For a realistic sensor behavior simulation, considering the harvesting environment and the sensor mounting position, a phenomenological approach was chosen to build a multilayer LiDAR model at system level in Gazebo and ROS. A software-in-the-loop simulation of the mechatronic steering system was assembled by interfacing the commercial AppBase framework for point cloud processing and feature detection algorithms together with a machine model and control functions implemented in MATLAB/ Simulink. A test of ECUs in a hardware-in-the-loop simulation and as well as HMI elements in a driver-in-the-loop simulation was achieved by using CAN hardware interfaces and a CANoe based restbus simulation.
Smart city applications in the Big Data era require not only techniques dedicated to dynamicity handling, but also the ability to take into account contextual information, user preferences and requirements, and real-time events to provide optimal solutions and automatic configuration for the end user. In this paper, we present a specific functionality in the design and implementation of a declarative decision support component that exploits contextual information, user preferences and requirements to automatically provide optimal configurations of smart city applications. The key property of user-centricity of our approach is achieved by enabling users to declaratively specify constraints and preferences on the solutions provided by the smart city application through the Decision Support component, and automatically map these constraints and preferences to provide optimal responses targeting user needs. We showcase the effectiveness and flexibility of our solution in two real usecase scenarios: a multimodal travel planner and a mobile parking application. All the components and algorithms described in this paper have been defined and implemented as part of the Smart City Framework CityPulse.
Management of agricultural processes is often troubled by disconnections and data transfer failures. Limited cellular network coverage may prevent information exchange between mobile process participants.
The research projects KOMOBAR and ISOCom designed, implemented und field-tested a delay tolerant platform for robust communication in rural areas and challenging environments. An adaptable combination of infrastructure-based cellular networks and infrastructure-free multihop ad hoc communication (WLAN) leads to a variety of new communication opportunities. Temporal storage and forwarding of data on mobile farm machinery as well as dynamic platform configurations during process runtime strongly enhance reliability and robustness of data transfers.