Refine
Document Type
- Article (2)
Is part of the Bibliography
- yes (2)
Keywords
- Carbon sequestration (1)
- Climate adaptation (1)
- Plant materials (1)
- Soils (1)
- Target species (1)
- functional type (1)
- legumes (1)
- restoration (1)
- stable isotopes (1)
- topsoil removal (1)
Institute
- Fakultät AuL (2)
Grasslands are ubiquitous globally, and their conservation and restoration are critical to combat both the biodiversity and climate crises. There is increasing interest in implementing effective multifunctional grassland restoration to restore biodiversity concomitant with above- and belowground carbon sequestration, delivery of carbon credits and/or integration with land dedicated to solar panels. Other common multifunctional restoration considerations include improved forage value, erosion control, water management, pollinator services, and wildlife habitat provisioning. In addition, many grasslands are global biodiversity hotspots. Nonetheless, relative to their impact, and as compared to forests, the importance of preservation, conservation, and restoration of grasslands has been widely overlooked due to their subtle physiognomy and underappreciated contributions to human and planetary well-being. Ultimately, the global success of carbon sequestration will depend on more complete and effective grassland ecosystem restoration. In this review, supported by examples from across the Western world, we call for more strenuous and unified development of best practices for grassland restoration in three areas of concern: initial site conditions and site preparation; implementation of restoration measures and management; and social context and sustainability. For each area, we identify the primary challenges to grassland restoration and highlight case studies with proven results to derive successful and generalizable solutions.
15 δ N signals in plant and soil material integrate over a number of biogeochemical processes
related to nitrogen (N) and therefore provide information on net effects of multiple
processes on N dynamics. In general little is known in many grassland restoration projects
on soil–plant N dynamics in relation to the restoration treatments. In particular, 15 δ N signals
may be a useful tool to assess whether abiotic restoration treatments have produced the
desired result. In this study we used the range of abiotic and biotic conditions provided
by a restoration experiment to assess to whether the restoration treatments and/or plant
functional identity and legume neighborhood affected plant 15 δ N signals. The restoration
treatments consisted of hay transfer and topsoil removal, thus representing increasing
restoration effort, from no restoration measures, through biotic manipulation to major
abiotic manipulation. We measured 15 δ N and %N in six different plant species (two nonlegumes and four legumes) across the restoration treatments. We found that restoration
treatments were clearly reflected in 15 δ N of the non-legume species, with very depleted
15 δ N associated with low soil N, and our results suggest this may be linked to uptake of
ammonium (rather than nitrate). The two non-legume species differed considerably in their
15 δ N signals, which may be related to the two species forming different kinds of mycorrhizal
symbioses. Plant 15 δ N signals could clearly separate legumes from non-legumes, but our
results did not allow for an assessment of legume neighborhood effects on non-legume
15 δ N signals. We discuss our results in the light of what the 15 δ N signals may be telling
us about plant–soil N dynamics and their potential value as an indicator for N dynamics in
restoration.