Refine
Year of publication
Document Type
- Article (34)
- Part of a Book (18)
- Conference Proceeding (3)
- Book (1)
Is part of the Bibliography
- yes (56)
Keywords
- Electroporation (9)
- PEF (8)
- Pulsed electric field (6)
- Pulsed electric fields (6)
- Extraction (4)
- Drying (3)
- Hermetia illucens (3)
- High pressure processing (3)
- Quality (3)
- Ultrasound (3)
Institute
- Fakultät AuL (56)
Olive oil holds significant importance in the European diet and is renowned globally for its sensory attributes and health benefits. The effectiveness of producing olive oil is greatly influenced by factors like the maturity and type of olives used, as well as the milling techniques employed. Generally, mechanical methods can extract approximately 80% of the oil contained in the olives. The rest 20% of the oil remains in the olive waste generated at the end of the process. Additionally, significant amounts of bioactive compounds like polyphenols are also lost in the olive pomace. Traditionally, heat treatment, enzymes, and other chemicals are used for the enhancement of oil extraction; however, this approach may impact the quality of olive oil. Therefore, new technology, such as pulsed electric field (PEF), is of great benefit for nonthermal yield and quality improvements.
Ohmic heating (OH) is an alternative sustainable heating technology that has demonstrated its potential to modify protein structures and aggregates. Furthermore, certain protein aggregates, namely amyloid fibrils (AF), are associated with an enhanced protein functionality, such as gelation. This study evaluates how Ohmic heating (OH) influences the formation of AF structures from ovalbumin source under two electric field strength levels, 8.5 to 10.5 and 24.0–31.0 V/cm, respectively. Hence, AF aggregate formation was assessed over holding times ranging from 30 to 1200 sunder various environmental conditions (3.45 and 67.95 mM NaCl, 80, 85 and 90 °C, pH = 7). AF were formed under all conditions. SDS-PAGE revealed that OH had a higher tendency to preserve native ovalbumin molecules. Furthermore, Congo Red and Thioflavin T stainings indicated that OH reduces the amount of AF structures. This finding was supported by FTIR measurements, which showed OH samples to contain lower amounts of beta-sheets. Field flow fractioning revealed smaller-sized aggregates or aggregate clusters occurred after OH treatment. In contrast, prolonged holding time or higher treatment temperatures increased ThT fluorescence, beta-sheet structures and aggregate as well as cluster sizes. Ionic strength was found to dominate the effects of electric field strength under different environmental conditions.
Plant-based proteins are rapidly emerging, while novel technologies are explored to offer more efficient extraction processes. The current study aimed to evaluate the effects of pulsed electric fields (PEFs) and temperature on the extraction of soluble proteins from nettle leaves (Urtica dioica L.) and identify an optimal operational range for the highest yield of soluble proteins. Extractions and kinetic modeling were conducted with whole and ground dried leaves at different temperatures (30–70 °C) and specific energy of PEF (0–30 kJ kg−1) with extraction times of up to 60 min. The influence of temperature and specific energy on the soluble protein extraction yields was investigated and modeled using composite central design and response surface methodology. The experimental results were fitted to Peleg's kinetic model, which satisfactorily described the extraction process (R2 > 0.902), and PEF treated samples resulted in a higher soluble protein yield and shortened processing time. Response surface methodology showed that the linear effect of temperature and quadratic effect of PEF (p < 0.01) were highly significant for protein yield. In the optimized PEF-extraction region (specific energy between 10 and 24 kJ kg−1, and 70–78 °C), soluble protein yield was higher than 60% after 5 minutes of extraction. The achieved results are relevant for developing processes for PEF assisted extraction of soluble proteins from leaves. Understanding the effects of PEFs and process parameters is crucial to obtain high protein yields, while requiring low energy and short processing time.
Novel foods by process are a special case in the catalogue of the ten novel food categories according to Article 3 (2) point (a) of the Novel Food Regulation (EU) 2015/2283, since the other nine categories derive their assessment as possible novel foods from their purely substantial properties. In the case of novel foods by process, the problem of dealing with the reference date of 15 May 1997, which is in the end a random reference date, is particularly significant. It would make more sense to have a dynamic reference date that ‘moves along the timeline’ or at least is reset from time to time and is more up-to-date. The characteristic that a process causes ‘significant changes in the composition or structure of the food, affecting its nutritional value, metabolism or level of undesirable substances’ must be understood in such a way that it is only a question of the generation of undesirable substances through the application of the process, but not their reduction, e.g. the reduction of undesirable microorganisms. Finally, the question also arises as to how the assessment of the process technology relates to the assessment of a food in the context of a novel food by composition category. This concerns the exemption for foods that have a history of use as safe foods, which, according to the view taken here, must also be interpreted into the category of novel foods by process.
The kiwifruit processing industry is focused on product yield maximization and keeping energy costs and waste effluents to a minimum while maintaining high product quality. In our study, pulsed electric field (PEF) pretreatment enhanced kiwifruit processing to facilitate peelability and specific peeling process and enhanced valorization of kiwifruit waste. PEF optimization was applied to obtain the best treatment parameters. A 32 factorial design of response surface methodology was applied to find the effect of time elapsed after PEF treatment and the PEF-specific energy input on specific peeling force and kiwifruit firmness as response criteria. Under the optimized condition, the specific peeling force decreased by 100, and peelability increased by 2 times. The phenolic content and antioxidant capacity of PEF-treated kiwifruit bagasse were 5.1% and 260% richer than the control sample. Overall, the optimized PEF pretreatments incorporated into kiwifruit processing led to decreased energy demand and increased productivity.
The impact of pulsed light (PL) treatment on naturally occurring microorganisms, mycotoxins, and on physicochemical properties in red pepper powder was investigated. Powder samples were exposed to different PL treatments up to 61 pulses, with fluence ranging from 1.0 to 9.1 J/cm2. The highest fluence applied (9.1 J/cm2, 61 pulses, 20 s) resulted in 2.7, 3.1, and 4.1 log CFU/g reduction of yeasts, molds, and total plate counts (TPC), where initial microbial loads were 4.6, 5.5, and 6.5 log CFU/g, respectively. At the same fluence intensity, a maximum reduction of 67.2, 50.9, and 36.9% of aflatoxin B1 (AFB1), total aflatoxins (AF), and ochratoxin A (OTA) were detected, respectively. Proportional increase in temperature of the samples was observed from the absorbed PL energy, reaching maximum of 59.8°C. The inactivation of investigated microorganisms and mycotoxins followed first-order kinetics (R2 > 0.95). The fluence intensity at 6.9 and 9.1 J/cm2 did not cause degradation, but rather a significant (p < .05) and apparent increase of total phenols. Total color difference (ΔE*) revealed only “slight differences,” compared to the untreated sample. In conclusion, higher reduction of microbial load and mycotoxins in red pepper powder could be achieved, when higher treatment intensity was applied. This suggests the PL as a potential technology for decontamination of red pepper powder and other spice powders.
The impact of Pulsed Electric Field (PEF) processing pre-treatment on the texture and kinetics of in vitro starch digestibility of French fries made from two potato cultivars (Solanum tuberosum L.) containing dry matter content ranging from 19 to 22% was investigated. Whole and steam-peeled potato tubers were treated with a pilot scale PEF unit (electric field strength of 1.1 and 1.9 kV/cm with energy input <10 kJ/kg or ∼50 kJ/kg). This trial was carried out in a commercial French-fry plant using an industrial scale cutter, blancher, fryer and blast-freezer to prepare the frozen par-fried French fry samples. After subsequent final batch frying of the frozen fries, at 180 °C for 3 min to mimic the typical preparation practice at restaurant, retail and household, the outer crust of the fries produced from PEF-treated potatoes was significantly harder (9.4–16.3 N) than crust produced from untreated potatoes (6.9–8.5 N). High intensity (1.9 kV/cm with energy input ∼50 kJ/kg) PEF processing was found to cause defects (i.e. hollowness in the internal core) in the fries. A fractional conversion model was a good fit for the starch digestion kinetics of all French fry samples during the small intestinal phase (based on standardised INFOGEST static in vitro digestion assay). A lower % of total starch hydrolysis was predicted for French fries produced from high dry matter (>21%) tubers pretreated with PEF at electric field strength of 1.9 kV/cm. The findings generated in this study demonstrate PEF pretreatment may influence the texture of French fries and the extent of starch digestion that occurs.
The influence of moderate electric fields (MEF) on thermally induced gelation and network structures of patatin enriched potato protein (PPI) was investigated. PPI solutions with 9 wt% protein (pH 7) and 25 mM NaCl were heated from 25 to 65 °C via OH (3–24 V/cm) or conventional heating (COV) at various come-up (240 s and 1200 s) and holding times (30 s and 600 s). Self-standing gels were produced but less proteins denatured when heated via OH. Further, SDS-PAGE and GPC measurements revealed more native patatin remaining after OH treatment. Scanning electron microscopy showed OH gels to have more gap-like structures and frayed areas than COV treated gels which resulted in lower water holding capacity. On molecular scale, less hydrophobic interactions were measured within the protein network and FTIR trials showed the MEF to affect beta-sheet structures. OH gels further showed lower rigidity and higher flexibility, thus, gelling functionality was affected via OH.
Among all nonthermal food processing technologies, high intensity pulsed electric fields (PEF) is one of the most appealing due to its short treatment times and reduced heating effects. Its capability to enhance extraction processes and to inactivate microorganisms at temperatures that do not cause any deleterious effect on flavor, color or nutrient value of foods opens interesting possibilities for the food processing industry.
This new and revised edition of Pulsed Electric Fields Technology for the Food Industry presents the information accumulated on PEF over the last decade by experienced microbiologists, biochemists, food technologists and electrical and food engineers. With insight into current applications of PEF across the food industry, this text offers a comprehensive and up to date resource on PEF application in the food industry from the scientific fundamentals to its use in various food types to environmental and regulatory aspects. For researchers and industry professionals seeking a single source containing all of the relevant and up to date information on PEF in foods, look no further than this essential text.