Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Keywords
- Movement disorders (2)
- Neck pain (2)
- Assessment technology (1)
- Biomechanics feasibility studies (1)
- Exercise (1)
- Headache (1)
- Neck muscles (1)
- Reproducibility (1)
- Temporomandibular joint disorders (1)
Institute
- Fakultät WiSo (3)
The aim of the study was to develop a novel real-time, computer-based synchronization system to continuously record pressure and craniocervical flexion ROM (range of motion) during the CCFT (craniocervical flexion test) in order to assess its feasibility for measuring and discriminating the values of ROM between different pressure levels. This was a descriptive, observational, crosssectional, feasibility study. Participants performed a full-range craniocervical flexion and the CCFT. During the CCFT, a pressure sensor and a wireless inertial sensor simultaneously registered data of pressure and ROM. A web application was developed using HTML and NodeJS technologies. Forty-five participants successfully finished the study protocol (20 males, 25 females; 32 (11.48) years). ANOVAs showed large effect significant interactions between pressure levels and the percentage of full craniocervical flexion ROM when considering the 6 pressure reference levels of the CCFT (p < 0.001; η 2 = 0.697), 11 pressure levels separated by 1 mmHg (p < 0.001; η 2 = 0.683), and 21 pressure levels separated by 0.5 mmHg (p < 0.001; η 2 = 0.671). The novel time synchronizing system seems a feasible option to provide real-time monitoring of both pressure and ROM, which could serve as reference targets to further investigate the potential use of inertial sensor technology to assess or train deep cervical flexors.
Introduction: Neck pain is a very common musculoskeletal disorder associated with high socioeconomic costs derived from work absenteeism and medical expenses. Previous studies have suggested that patients with neck pain of different origins present sensorimotor control impairments compared with the asymptomatic population. However, there is a small number of published studies focusing on these with conflicting results. In addition, the existing methodological limitations highlight the need for more and better quality studies. Moreover, longitudinal studies are necessary to investigate whether changes in pain or disability in individuals with chronic neck pain over time associate with changes in cervical sensorimotor control.
Methods and analysis: This is a descriptive, observational, longitudinal, prospective study consecutively enrolling 52 patients with non-specific neck pain and 52 age-matched asymptomatic participants.
Intensity of pain, neck disability, duration of symptoms, topography of pain and comorbidities will be registered at baseline. Sensorimotor control variables including active range of motion, movement speed, acceleration, smoothness of motion, head repositioning accuracy and motion coupling patterns will be recorded as primary outcomes by means of inertial sensors during the following tests consecutively performed in two sessions separated by 12 months: (1) kinematics of planar movements, (2) kinematics of the craniocervical flexion movement, (3) kinematics during functional tasks and (4) kinematics of task-oriented neck movements in response to visual targets.
Secondary outcomes will include: (1) Regular physical activity levels, (2) Kinesiophobia, (3) Symptoms related to central sensitisation and (4) The usability of the inertial measurement unit sensor technology.
Ethics and dissemination: This study was approved by the Research Ethics Committee of CEU San Pablo University (495/21/39). Patients will be recruited after providing written informed consent and they will be able to withdraw their consent at any time. Only the study investigators will have access to the study data. The results will be disseminated through scientific publications, conferences and media.
Background
The craniocervical flexion test (CCFT) is recommended when examining patients with neck pain related conditions and as a deep cervical retraining exercise option. During the execution of the CCFT the examiner should visually assess that the amount of craniocervical flexion range of motion (ROM) progressively increases. However, this task is very subjective. The use of inertial wearable sensors may be a user-friendly option to measure and objectively monitor the ROM. The objectives of our study were (1) to measure craniocervical flexion range of motion (ROM) associated with each stage of the CCFT using a wearable inertial sensor and to determine the reliability of the measurements and (2) to determine craniocervical flexion ROM targets associated with each stage of the CCFT to standardize their use for assessment and training of the deep cervical flexor (DCF) muscles.