Refine
Is part of the Bibliography
- yes (5)
Keywords
- Acidification (1)
- Biogas digestate (1)
- Cattle slurry (1)
- Greenhouse gas emissions (1)
- Livestock (1)
- Manure (1)
- Nitrification inhibitor (1)
- Nitrogen cycling (1)
- Nitrogen use efficiency (1)
- Open slot injection (1)
Institute
- Fakultät AuL (5)
The effect of slurry application techniques and slurry N stabilizing strategies on nitrous oxide emission from grasslands is poorly understood and, therefore, can result in large uncertainties in national/regional inventories. Field experiments were, thus, conducted to estimate the effect of different fertilization techniques on nitrous oxide (N2O) emissions. Fertilizer was applied (135–270 kg N ha−1 year−1) as calcium ammonium nitrate (CAN), untreated or treated cattle slurry. The slurry was either treated with sulfuric acid (target pH = 6.0), applied using trailing shoes or treated with 3,4-dimethyl pyrazole phosphate and applied via slot injection. N2O fluxes were sampled using the closed chamber technique. Cumulative N2O emissions ranged 0.1–2.9 kg N ha−1 year−1 across the treatment, sites and years. The N application techniques showed inconsistent effects on soil mineral N content, cumulative N2O emission and N yield. The fertilizer replacement value of slurry was low due to low N use efficiencies at the sites. However, a close positive relationship (r = 0.5; p = .013) between slurry value and biomass yield was observed, highlighting the benefit of high slurry value on crop productivity. N2O-N emission factors were low for all treatments, including CAN, but were 2–6 times higher in 2019 than in 2020 due to lower precipitation in 2020. Variations in N2O emission were largely explained by soil and climatic factors. Even with the low N2O emissions, this study highlights the benefit (significant mitigation of N2O emissions) of replacing the increasingly expensive chemical fertilizer N with input from slurry under favourable conditions for denitrification.
Rund 95 % der Ammoniakemissionen in Deutschland stammen aus der Landwirtschaft, 40 % davon aus der Ausbringung von Wirtschaftsdüngern. Flüssige Wirtschaftsdünger enthalten hohe Anteile an Ammoniumstickstoff, der insbesondere im Kontakt mit der Atmosphäre schnell in gasförmiges Ammoniak (NH3) umgewandelt werden kann. Damit geht der Stickstoff den Pflanzen als wichtiger Nährstoff verloren. Der Luftschadstoff NH3 gefährdet nicht nur sensible Ökosysteme, sondern auch die menschliche Gesundheit.
Ammonia emissions following liquid manure application impair human health and threaten natural ecosystems. In growing arable crops, where immediate soil incorporation of the applied liquid manure is not possible, best-available application techniques are required in order to decrease ammonia losses. We determined ammonia emission, crop yield and nitrogen uptake of winter wheat in eight experimental sites across Germany. Each individual experiment consisted of an unfertilized control (N0), broadcast calcium ammonium nitrate (CAN) application as well as four different techniques to apply cattle slurry (CS) and biogas digestate (BD). Fertilizer was applied to growing winter wheat at a total rate of 170 kg N ha-1 split into two equal dressings. The following application techniques were tested for both liquid manure types: (i) trailing hose (TH) application using untreated and (ii) acidified (~pH 6) liquid manure (+A), as well as (iii) a combination of open slot injection (SI) for the first dressing and trailing shoe (TS) application for the second dressing without and (iv) with the addition of a nitrification inhibitor (NI) for the first dressing. The highest ammonia emissions (on average 30 kg N ha-1) occurred following TH application of BD. TH application of CS led to significantly lower emissions (on average 19 kg N ha-1). Overall, acidification reduced ammonia emissions by 64% compared to TH application without acidification for both types of liquid manures. On average, the combination of SI and TS application resulted in 23% lower NH3 emissions in comparison to TH application (25% for the first application by SI and 20% for the second application by TS). Supplementing an NI did not affect ammonia emissions. However, decreasing ammonia emissions by acidification or SI did not increase winter wheat yield and nitrogen uptake. All organically fertilized treatments led to similar crop yield (approx. 7 t ha-1 grain dry matter yield) and above-ground biomass nitrogen uptake (approx. 150 kg ha-1). Yield (8 t ha-1) and nitrogen uptake (approx. 190 kg h-1) were significantly higher for the CAN treatment; while for the control, yield (approx. 4.5 t ha-1) and above-ground biomass nitrogen uptake (approx. 90 kg ha-1) were significantly lower. Overall, our results show that reducing NH3 emissions following liquid manure application to growing crops is possible by using different mitigation techniques. For our field trial series, acidification was the technique with the greatest NH3 mitigation potential.
There is a great need for simple and inexpensive methods to quantify ammonia emissions in multi-plot field trials. However, methods that meet these criteria have to be thoroughly validated. In the calibrated passive sampling approach, acid traps placed in the center of quadratic plots absorb ammonia, enabling relative comparisons between plots. To quantify ammonia emissions, these acid trap samplings are scaled by means of a transfer coefficient (TC) obtained from simultaneous measurements with the dynamic tube method (DTM). However, dynamic tube measurements are also comparatively costly and time-consuming. Our objective was to assess the best practice for using calibrated passive sampling in multi-plot field trials. One particular challenge in such experiments is to evaluate the influence of ammonia drift between plots. In a series of eight multi-plot field trials, acid traps and DTM were used simultaneously on all plots to measure ammonia emissions caused by different slurry application techniques. Data obtained by both methods were correlated, and the influence of the ubiquitous ammonia background on both methods was evaluated by comparing net values, including the subtraction of the background with gross values (no background subtraction). Finally, we provide recommendations for calculating a TC for calibrating relative differences between plots, based on simultaneous acid trap and dynamic tube measurements on selected plots. Treatmentmean values obtained by bothmethods correlatedwell. For most field trials, R2 values between 0.6 and 0.8were obtained. Ammonia background concentrations affected both methods. Drift between plots contributed to the background for the acid traps, whereas the contamination of the chamber system might have caused the background for the DTM. Treatments with low emissions were comparatively more affected by that background. For a robust application of calibrated passive sampling, we recommend calculating the TC based on a treatment with high ammonia emissions, reducing the relative influence of the ubiquitous ammonia background.
Impact of cattle slurry application methods on ammonia losses and grassland nitrogen use efficiency
(2022)
Optimal manure management is required to ensure efficient nutrient supply to farmland and to avoid adverse environmental impacts. Accordingly, ammonia (NH3) emissions associated with different slurry application techniques were investigated in grassland trials under different soil and weather conditions across Germany. Cattle slurry was applied in two dressings, early in spring and after the first silage cut, with a target amount of 170 kg N ha 1. The application treatments comprised: trailing shoe (TS), acidified slurry applied with trailing shoe (TS + A), open slot injection (SI), and slurry treated with a nitrification inhibitor (NI) applied by slot injection (SI + NI). In addition, slurry application techniques were compared with a non-N-fertilized control and a mineral fertilizer treatment (calcium ammonium nitrate, CAN). NH3 measurements followed each N application event. NH3 losses were equivalent to 1–39% of total ammoniacal nitrogen (TAN) applied. The average NH3 mitigation potential of the different slurry application techniques compared to TS was 45.7 ± 7, 21.2 ± 6.2 and 13.7 ± 8.2% for TS + A, SI and SI + NI, respectively. The use of nitrification inhibitor with slot injected slurry did not increase NH3 losses relative to TS (p > 0.05). Mean apparent N use efficiency was two times higher for CAN (49%) than the slurry treatments (24%) but was comparable between SI + NI and CAN in five out of the eight cases. Our results indicate that mean TAN related NH3 emissions of tested treatments (3.3, 22.6, 12.2, 17.8 and 19.3% for CAN, TS, TS + A, SI and SI + NI, respectively) were generally lower than described in previous studies. Moreover, the results suggested possible increases in NH3 mitigation and N use efficiency when cattle slurry is applied with acidification or injection techniques. We found no evidence that NI addition to slot injected slurry, a treatment discussed as a measure to reduce N2O emission and nitrate leaching, changed NH3 emission.