Refine
Document Type
- Article (6)
- Doctoral Thesis (1)
- Other (1)
Is part of the Bibliography
- yes (8)
Keywords
- Biogas digestate (2)
- Cattle slurry (2)
- Nitrogen use efficiency (2)
- Trailing hose (2)
- Trailing shoe (2)
- Acid traps (1)
- Acidification (1)
- Ammonia background concentration (1)
- Ammonia emissions (1)
- Calibrated passive sampling (1)
Institute
- Fakultät AuL (8)
Injection of slurry or digestate below maize seeds is a relatively new technique developed to improve nitrogen use efficiency. However, this practice has the major drawback of increasing nitrous oxide (N2O) emissions. The application of a nitrification inhibitor (NI) is an effective method to reduce these emissions. To evaluate the effect of the NI 3,4‐dimethypyrazole phosphate (DMPP) on N2O emissions and the stabilization of ammonium, a two‐factorial soil‐column experiment was conducted. PVC pipes (20 cm diameter and 30 cm length) were used as incubation vessels for the soil‐columns. The trial consisted of four treatments in a randomized block design with four replications: slurry injection, slurry injection + DMPP, digestate injection, and digestate injection + DMPP. During the 47‐day incubation period, N2O fluxes were measured twice a week and cumulated by linear interpolation of the gas‐fluxes of consecutive measurement dates. After completion of the gas flux measurement, concentration of ammonium and nitrate within the soil‐columns was determined. DMPP delayed the conversion of ammonium within the manure injection zone significantly. This effect was considerably more pronounced in treatment digestate + NI than in treatment slurry + NI. Regarding the cumulated N2O emissions, no difference between slurry and digestate treatments was determined. DMPP reduced the release of N2O significantly. Transferring the results into practice, the use of DMPP is a promising way to reduce greenhouse gas emissions and nitrate leaching, following the injection of slurry or digestate.
The effect of slurry application techniques and slurry N stabilizing strategies on nitrous oxide emission from grasslands is poorly understood and, therefore, can result in large uncertainties in national/regional inventories. Field experiments were, thus, conducted to estimate the effect of different fertilization techniques on nitrous oxide (N2O) emissions. Fertilizer was applied (135–270 kg N ha−1 year−1) as calcium ammonium nitrate (CAN), untreated or treated cattle slurry. The slurry was either treated with sulfuric acid (target pH = 6.0), applied using trailing shoes or treated with 3,4-dimethyl pyrazole phosphate and applied via slot injection. N2O fluxes were sampled using the closed chamber technique. Cumulative N2O emissions ranged 0.1–2.9 kg N ha−1 year−1 across the treatment, sites and years. The N application techniques showed inconsistent effects on soil mineral N content, cumulative N2O emission and N yield. The fertilizer replacement value of slurry was low due to low N use efficiencies at the sites. However, a close positive relationship (r = 0.5; p = .013) between slurry value and biomass yield was observed, highlighting the benefit of high slurry value on crop productivity. N2O-N emission factors were low for all treatments, including CAN, but were 2–6 times higher in 2019 than in 2020 due to lower precipitation in 2020. Variations in N2O emission were largely explained by soil and climatic factors. Even with the low N2O emissions, this study highlights the benefit (significant mitigation of N2O emissions) of replacing the increasingly expensive chemical fertilizer N with input from slurry under favourable conditions for denitrification.
Easy and inexpensive methods for measuring ammonia emissions in multi-plot field trials allow the comparison of several treatments with liquid manure application. One approach that might be suitable under these conditions is the dynamic tube method (DTM). Applying the DTM, a mobile chamber system is placed on the soil surface, and the air volume within is exchanged at a constant rate for approx. 90 s. with an automated pump. This procedure is assumed to achieve an equilibrium ammonia concentration within the system. Subsequently, a measurement is performed using an ammonia-sensitive detector tube. Ammonia fluxes are calculated based on an empirical model that also takes into account the background ammonia concentration measured on unfertilized control plots. Between measurements on different plots, the chamber system is flushed with ambient air and cleaned with paper towels to minimize contamination with ammonia. The aim of this study was to determine important prerequisites and boundary conditions for the application of the DTM.
We conducted a laboratory experiment to test if the ammonia concentration remains stable while performing a measurement. Furthermore, we investigated the cleaning procedure and the effect of potential ammonia carryover on cumulated emissions under field conditions following liquid manure application. The laboratory experiment indicated that the premeasurement phase to ensure a constant ammonia concentration is not sufficient. The concentration only stabilized after performing more than 100 pump strokes, with 20 pump strokes (lasting approximately 90 s) being the recommendation.
However, the duration of performing a measurement can vary substantially, and linear conversion accounts for those differences, so a stable concentration is mandatory. Further experiments showed that the cleaning procedure is not sufficient under field conditions. Thirty minutes after performing measurements on high emitting plots, which resulted in an ammonia concentration of approx.
10 ppm in the chamber, we detected a residual concentration of 2 ppm. This contamination may affect measurements on plots with liquid manure application as well as on untreated control plots. In a field experiment with trailing hose application of liquid manure, we subsequently demonstrated that the calculation of cumulative ammonia emissions can vary by a factor of three, depending on the degree of chamber system contamination when measuring control plots. When the ammoni background values were determined by an uncontaminated chamber system that was used to measure only control plots, cumulative ammonia emissions were approximately 9 kg NH3-N ha1.
However, when ammonia background values were determined using the contaminated chamber system that was also used to measure on plots with liquid manure application, the calculation of cumulative ammonia losses indicated approximately 3 kg NH3-N ha1. Based on these results, it can be concluded that a new empirical DTM calibration is needed for multi-plot field experiments with high-emitting treatments.
Rund 95 % der Ammoniakemissionen in Deutschland stammen aus der Landwirtschaft, 40 % davon aus der Ausbringung von Wirtschaftsdüngern. Flüssige Wirtschaftsdünger enthalten hohe Anteile an Ammoniumstickstoff, der insbesondere im Kontakt mit der Atmosphäre schnell in gasförmiges Ammoniak (NH3) umgewandelt werden kann. Damit geht der Stickstoff den Pflanzen als wichtiger Nährstoff verloren. Der Luftschadstoff NH3 gefährdet nicht nur sensible Ökosysteme, sondern auch die menschliche Gesundheit.
Ammonia emissions caused by liquid manure application affect human life expectancy and threaten natural ecosystems. However, other associated concerns like greenhouse gas emissions and nitrate leaching are equally relevant. Thus, German legislation severely restricted autumn application of liquid manure, since most crops have low nutrient demand at this development stage, so that much of the applied nitrogen would be lost to the environment. Therefore, liquid manures have to be applied in spring into growing crops. However, immediate incorporation into the soil to minimize ammonia emissions is not possible under these circumstances. Moreover, biogas digestate has become an increasingly popular organic fertilizer over the last three decades, since anaerobic fermentation is a climate friendly energy source. However, it might be associated with increased ammonia emissions due to its comparatively high pH and ammonium content. Therefore, liquid manure should be applied using optimized techniques for growing crops to mitigate ammonia emissions. Those techniques are based either on reducing the contact of fertilizer and atmosphere or on acidifying liquid manure. To evaluate optimized techniques, ammonia emissions have to be quantified in multi-plot field trials. Unfortunately, standard micrometeorological methods require large field areas and expensive equipment, making them difficult or even impossible to apply. Thus, other approaches adjusted to those specific requirements are used in multi-plot field trials. Calibrated passive sampling uses acid traps placed in the center of each plot to absorb ammonia, which enables a relative comparison of emissions. Subsequently, acid trap samplings are scaled by simultaneous measurements with the dynamic tube method, which uses a mobile chamber system to quantify ammonia emissions. The first objective of this study was therefore to evaluate calibrated passive sampling in multi-plot field trials with liquid manure application. However, ammonia drift between plots as well as chamber system contamination might be a particular challenge in such an experimental set-up. Therefore, the first step was to analyze the potential influence of the ammonia background on acid trap samplings and dynamic tube measurements. In a second step, the best practice to scale relative differences between plots obtained from acid trap samplings was assessed. In order to reduce costs and to minimize chamber system contamination, dynamic tube measurements are only performed on a few selected plots. Thus, characteristics of a well-suited treatment to perform simultaneous measurements with both methods were evaluated. However, the transfer coefficient (cumulated qualitative emissions divided by cumulated acid trap samplings) required to scale emissions might depend on the level of data aggregation. It can be calculated based on individual plots, treatment means or all plots of a field experiment. Therefore, it was evaluated which amount of data aggregation is sufficient. The second objective of this study was to evaluate optimized techniques to apply liquid manure in growing winter wheat in a series of field experiments in Germany. Calibrated passive sampling was used to assess ammonia emissions and yield and nitrogen uptake were measured as well to allow an agronomical evaluation of those techniques. Nitrogen fertilizer were applied at a total rate of 170 kg N ha−1 split into two equal dressings. Each experiment consisted of several techniques to apply cattle slurry and biogas digestate: i) trailing hose application using untreated and ii) acidified liquid manure, as well as iii) a combination of open slot injection for the first dressing and trailing shoe application for the second dressing. Furthermore, ammonia emissions, yield and nitrogen uptake of organically fertilized treatments were put into perspective by also implementing a treatment with mineral fertilization (broadcast calcium ammonium nitrate) and an unfertilized control. Furthermore, the unfertilized control was crucial to assess the influence of ammonia drift between plots. Acid trap samplings differed significantly between control plots, indicating that cumulated samplings of each individual plot depend not only on the ammonia emissions of the respective plot, but also on its specific background. Hence, many replications are necessary to obtain valid treatment means and those mean values show high standard deviations. However, there is no evidence, that passive sampler results are generally biased. Therefore, they are an easy way to obtain relative comparisons between treatment means. For the dynamic tube method, ammonia drift between plots had only a minor impact. However, we showed that chamber system contamination has a profound effect on calculating cumulated ammonia emissions in multi-plot field trials. The on field cleaning procedure using paper towels was not sufficient to reduce contamination. The relative influence of background ammonia was higher in treatments with low emissions for both methods. Therefore, scaling of acid trap samplings by simultaneous dynamic tube measurements should be performed in a treatment with high ammonia emissions. Regarding the amount of data aggregation required to scale emissions, this thesis showed that calculating a transfer coefficient based on individual plots is not sufficient, due to the influence of the fluctuating ammonia background. Therefore, acid trap samplings were scaled based on mean values in a treatment with high ammonia emissions. In this series of winter wheat field trials, the highest ammonia emissions (on average 24 kg N ha−1) occurred following trailing hose application. Applying biogas digestate lead to approximately 60 % higher emissions than cattle slurry application. Overall, acidification reduced emissions by 64 % for both liquid manure types. On average, the combination of slot injection and trailing shoe application resulted in 23% lower ammonia emissions compared to trailing hose application. However, decreasing ammonia emissions did not increase yield and nitrogen uptake. All treatments with liquid manure application led to similar crop yield (approximately 7 t ha−1 grain dry matter yield) and aboveground biomass nitrogen uptake (approximately 150 kg ha−1). Yield (8 t ha−1) and nitrogen uptake (approximately 190 kg ha−1) were significantly increased for the minerally fertilized treatment, while for the control, yield (approximately 4.5 t ha−1) and nitrogen uptake (approximately 90 kg ha−1) were significantly reduced. In summary, our results show that the mitigation of ammonia emissions originating from liquid manure application to growing crops is possible by using optimized application techniques. For this series of field trials, acidification was the technique with the highest ammonia mitigation potential. Future studies using calibrated passive sampling should address the importance of ammonia drift and chamber system contamination. Therefore, the use of separate dynamic tube chamber systems for each plot is recommended. Furthermore, increasing the plot size might reduce ammonia drift.
Ammonia emissions following liquid manure application impair human health and threaten natural ecosystems. In growing arable crops, where immediate soil incorporation of the applied liquid manure is not possible, best-available application techniques are required in order to decrease ammonia losses. We determined ammonia emission, crop yield and nitrogen uptake of winter wheat in eight experimental sites across Germany. Each individual experiment consisted of an unfertilized control (N0), broadcast calcium ammonium nitrate (CAN) application as well as four different techniques to apply cattle slurry (CS) and biogas digestate (BD). Fertilizer was applied to growing winter wheat at a total rate of 170 kg N ha-1 split into two equal dressings. The following application techniques were tested for both liquid manure types: (i) trailing hose (TH) application using untreated and (ii) acidified (~pH 6) liquid manure (+A), as well as (iii) a combination of open slot injection (SI) for the first dressing and trailing shoe (TS) application for the second dressing without and (iv) with the addition of a nitrification inhibitor (NI) for the first dressing. The highest ammonia emissions (on average 30 kg N ha-1) occurred following TH application of BD. TH application of CS led to significantly lower emissions (on average 19 kg N ha-1). Overall, acidification reduced ammonia emissions by 64% compared to TH application without acidification for both types of liquid manures. On average, the combination of SI and TS application resulted in 23% lower NH3 emissions in comparison to TH application (25% for the first application by SI and 20% for the second application by TS). Supplementing an NI did not affect ammonia emissions. However, decreasing ammonia emissions by acidification or SI did not increase winter wheat yield and nitrogen uptake. All organically fertilized treatments led to similar crop yield (approx. 7 t ha-1 grain dry matter yield) and above-ground biomass nitrogen uptake (approx. 150 kg ha-1). Yield (8 t ha-1) and nitrogen uptake (approx. 190 kg h-1) were significantly higher for the CAN treatment; while for the control, yield (approx. 4.5 t ha-1) and above-ground biomass nitrogen uptake (approx. 90 kg ha-1) were significantly lower. Overall, our results show that reducing NH3 emissions following liquid manure application to growing crops is possible by using different mitigation techniques. For our field trial series, acidification was the technique with the greatest NH3 mitigation potential.
There is a great need for simple and inexpensive methods to quantify ammonia emissions in multi-plot field trials. However, methods that meet these criteria have to be thoroughly validated. In the calibrated passive sampling approach, acid traps placed in the center of quadratic plots absorb ammonia, enabling relative comparisons between plots. To quantify ammonia emissions, these acid trap samplings are scaled by means of a transfer coefficient (TC) obtained from simultaneous measurements with the dynamic tube method (DTM). However, dynamic tube measurements are also comparatively costly and time-consuming. Our objective was to assess the best practice for using calibrated passive sampling in multi-plot field trials. One particular challenge in such experiments is to evaluate the influence of ammonia drift between plots. In a series of eight multi-plot field trials, acid traps and DTM were used simultaneously on all plots to measure ammonia emissions caused by different slurry application techniques. Data obtained by both methods were correlated, and the influence of the ubiquitous ammonia background on both methods was evaluated by comparing net values, including the subtraction of the background with gross values (no background subtraction). Finally, we provide recommendations for calculating a TC for calibrating relative differences between plots, based on simultaneous acid trap and dynamic tube measurements on selected plots. Treatmentmean values obtained by bothmethods correlatedwell. For most field trials, R2 values between 0.6 and 0.8were obtained. Ammonia background concentrations affected both methods. Drift between plots contributed to the background for the acid traps, whereas the contamination of the chamber system might have caused the background for the DTM. Treatments with low emissions were comparatively more affected by that background. For a robust application of calibrated passive sampling, we recommend calculating the TC based on a treatment with high ammonia emissions, reducing the relative influence of the ubiquitous ammonia background.
Impact of cattle slurry application methods on ammonia losses and grassland nitrogen use efficiency
(2022)
Optimal manure management is required to ensure efficient nutrient supply to farmland and to avoid adverse environmental impacts. Accordingly, ammonia (NH3) emissions associated with different slurry application techniques were investigated in grassland trials under different soil and weather conditions across Germany. Cattle slurry was applied in two dressings, early in spring and after the first silage cut, with a target amount of 170 kg N ha 1. The application treatments comprised: trailing shoe (TS), acidified slurry applied with trailing shoe (TS + A), open slot injection (SI), and slurry treated with a nitrification inhibitor (NI) applied by slot injection (SI + NI). In addition, slurry application techniques were compared with a non-N-fertilized control and a mineral fertilizer treatment (calcium ammonium nitrate, CAN). NH3 measurements followed each N application event. NH3 losses were equivalent to 1–39% of total ammoniacal nitrogen (TAN) applied. The average NH3 mitigation potential of the different slurry application techniques compared to TS was 45.7 ± 7, 21.2 ± 6.2 and 13.7 ± 8.2% for TS + A, SI and SI + NI, respectively. The use of nitrification inhibitor with slot injected slurry did not increase NH3 losses relative to TS (p > 0.05). Mean apparent N use efficiency was two times higher for CAN (49%) than the slurry treatments (24%) but was comparable between SI + NI and CAN in five out of the eight cases. Our results indicate that mean TAN related NH3 emissions of tested treatments (3.3, 22.6, 12.2, 17.8 and 19.3% for CAN, TS, TS + A, SI and SI + NI, respectively) were generally lower than described in previous studies. Moreover, the results suggested possible increases in NH3 mitigation and N use efficiency when cattle slurry is applied with acidification or injection techniques. We found no evidence that NI addition to slot injected slurry, a treatment discussed as a measure to reduce N2O emission and nitrate leaching, changed NH3 emission.