Refine
Document Type
- Article (2)
Language
- English (2)
Is part of the Bibliography
- yes (2)
Keywords
- PEF (2)
- Dehydration (1)
- Electroporation (1)
- Emerging technology (1)
- Lyophilization (1)
- Optical properties (1)
- Pulsed electric field (1)
- Sublimation drying (1)
- Thermal properties (1)
Institute
- Fakultät AuL (2)
In this study, the impact of a pulsed electric field (PEF) treatment on the final quality of freeze-dried apples was investigated. The PEF treatment has been performed at an electric field intensity equal to 1.07 kV/cm and a specific energy input of 0.5, 1 and 5 kJ/kg. The samples were freeze-dried (without a separate pre-freezing step) at varying temperatures (set on 40 °C and 60 °C) and pressures (0.1, 0.25 and 1 mbar). The quality of dried material was evaluated by the analysis of residual moisture content, macro- and microscopic properties, colour, the total content of phenolic compounds and the antioxidant activity as well as texture and acoustic properties. It was found that the residual moisture content of PEF treated samples was reduced by up to ∼82% in comparison to the intact tissue. For electroporated samples, a good preservation of macro-shape, an inhibition of shrinkage and the development of large pores were observed. The PEF treated material exhibited a higher total phenolic content, but a smaller antioxidant activity. Mechanical and acoustic analysis showed a higher crunchiness and brittleness for PEF-treated tissue, whereas untreated tissue was characterised by a harder and rather crackly texture.
In this study the effect of PEF pre-treatment on the microstructure of freeze-dried strawberry dices was investigated. The PEF treatment has been performed at an electric field intensity of 1.07 kV/cm and a specific energy input of 1 kJ/kg. The samples were freeze-dried at a temperature of 45 °C and a pressure of 1 mbar. The microstructure of dried material was evaluated by different physical and optical methods, such as SEM, μ-CT and thermogravimetry. Moreover, mechanical and acoustic properties as well as the colour of processed material have been analyzed. PEF pre-treated strawberry dices showed a more uniform shape, a better retention of volume and a visual better quality compared to untreated ones. Moreover, PEF pre-treatment led to a more homogeneous distribution and a greater thickness of pores. In accordance, analysis of textural properties evidenced that PEF treated freeze-dried strawberry dices were crispier than untreated ones. Measurement of L*a*b*-values showed that PEF treated material was characterized by a more preserved colour after freeze-drying than untreated ones.