Refine
Document Type
- Conference Proceeding (8)
- Part of a Book (4)
- Article (1)
Language
- English (13)
Is part of the Bibliography
- yes (13)
Keywords
- Power Consumption (2)
- BPMN (1)
- Business Process Modeling (1)
- DMN (1)
- DTNs (1)
- Dynamic Process Adaption (1)
- Embedded Software Engineering (1)
- Embedded Systems (1)
- Embedded software engineering (1)
- Energy Bug (1)
Institute
- Fakultät IuI (13)
Process modeling languages help to define and execute processes and workflows. The Business Process Model and Notation (BPMN) 2.0 is used for business processes in commercial areas such as banks, shops, production and supply industry. Due to its flexible notation, BPMN is increasingly being used in non-traditional business process domains like Internet of Things (IoT) and agriculture. However, BPMN does not fit well to scenarios taking place in environments featuring limited, delayed, intermittent or broken connectivity. Communication just exists for BPMN - characteristics of message transfers, their priorities and connectivity parameters are not part of the model. No backup mechanism for communication issues exists, resulting in error-prone and failing processes. This paper introduces resilient BPMN (rBPMN), a valid BPMN extension for process modeling in unreliable communication environments. The meta model addition of opportunistic message flows with Quality of Service (QoS) parameters and connectivity characteristics allows to verify and enhance process robustness at design time. Modeling of explicit or implicit, decision-based alternatives ensures optimal process operation even when connectivity issues occur. In case of no connectivity, locally moved functionality guarantees stable process operation. Evaluation using an agricultural slurry application showed significant robustness enhancements and prevented process failures due to communication issues.
Management of agricultural processes is often troubled by disconnections and data transfer failures. Limited cellular network coverage may prevent information exchange between mobile process participants.
The research projects KOMOBAR and ISOCom designed, implemented und field-tested a delay tolerant platform for robust communication in rural areas and challenging environments. An adaptable combination of infrastructure-based cellular networks and infrastructure-free multihop ad hoc communication (WLAN) leads to a variety of new communication opportunities. Temporal storage and forwarding of data on mobile farm machinery as well as dynamic platform configurations during process runtime strongly enhance reliability and robustness of data transfers.
Interpolation of data in smart city architectures is an eminent task for the provision of reliable services. Furthermore, it is a key functionality for information validation between spatiotemporally related sensors. Nevertheless, many existing projects use a simplified geospatial model that does not take the infrastructure, which affects events and effects in the real world, into account. There are various available algorithms for interpolation and the calculation of routes on infrastructure based graphs and distances on geospatial data. This work proposes a combined approach by interconnecting detailed geospatial data whilst regarding the underlying infrastructure model.
With the increasing size and complexity of embedded systems, the impact of software on energy consumption is becoming more important. Previous research focused mainly on energy optimization at the hardware level. However, little research has been carried out regarding energy optimization at the software design level. This paper focuses on the software design level and addresses the gap between software and hardware design for embedded systems. This is achieved by proposing a framework for software design patterns, which takes aspects of power consumption and time behavior of the hardware level into account. We evaluate the expressiveness of the framework by applying it to well-known and novel design patterns. Furthermore, we introduce a dimensionless numerical efficiency factor to make possible energy savings quantifiable.
Driven by the success of Internet of Things, the number of embedded systems is constantly increasing. Reducing power consumption and improving energy efficiency are among the key challenges for battery-powered embedded systems. Additionally, threats like climate change clearly illustrate the need for systems with low resource usages. Due to the impact of software applications on the system’s power consumption, it is important to optimize the software design even in early development phases. The important role of the software layer is often overlooked because energy consumption is commonly associated with the hardware layer. As a result, existing research mainly focuses on energy optimization at the hardware level, while only limited research has been published on energy optimization at the software design level. This work presents a novel approach to propose an energy-aware software design pattern framework description, which takes power consumption and time behavior into account. We evaluate the expressiveness of the framework by defining design patterns, which use elaborated power-saving strategies for various hardware components to reduce the overall energy consumption of an embedded system. Furthermore, we introduce a dimensionless numerical efficiency factor to make energy savings quantifiable and a comparison for design patterns applied in various use cases possible.
Reliable information processing is an indispensable task in Smart City environments. Heterogeneous sensor infrastructures of individual information providers and data portal vendors tend to offer a hardly revisable information quality. This paper proposes a correlation model-based monitoring approach to evaluate the plausibility of smart city data sources. The model is based on spatial, temporal, and domain dependent correlations between individual data sources. A set of freely available datasets is used to evaluate the monitoring component and show the challenges of different spatial and temporal resolutions.
Due to the resource-constrained nature of embedded systems, it is crucial to support the estimation of their power consumption as early in the development process as possible. Non-functional requirements based on power consumption directly impact the software design, e.g., watt-hour thresholds and expected lifetimes based on battery capacities. Even if software affects hardware behavior directly, these types of requirements are often overlooked by software developers because they are commonly associated with the hardware layer. Modern trends in software engineering such as Model-Driven Development (MDD) can be used in embedded software development to evaluate power consumption-based requirements in early design phases. However, power consumption aspects are currently not sufficiently considered in MDD approaches. In this paper, we present a model-driven approach using Unified Modeling Language profile extensions to model hardware components and their power characteristics. Software m odels are combined with hardware models to achieve a system-wide estimation, including peripheral devices, and to make the power-related impact in early design stages visible. By deriving energy profiles, we provide software developers with valuable feedback, which may be used to identify energy bugs and evaluate power consumption-related requirements. To demonstrate the potential of our approach, we use a sensor node example to evaluate our concept and to identify its energy bugs.