Volltext-Downloads (blau) und Frontdoor-Views (grau)

Quantifying Uncertainty for Predicting Renewable Energy Time Series Data Using Machine Learning

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Phil AupkeORCiD, Andreas KasslerORCiD, Andreas TheocharisORCiD, Magnus NilssonORCiD, Michael UelschenORCiD
Title (English):Quantifying Uncertainty for Predicting Renewable Energy Time Series Data Using Machine Learning
URN:urn:nbn:de:bsz:959-opus-68195
DOI:https://doi.org/10.3390/engproc2021005050
Parent Title (English):Engineering Proceedings
Publisher:MDPI
Place of publication:Basel Switzerland
Document Type:Conference Proceeding
Language:English
Year of Completion:2021
Release Date:2024/12/16
Volume:5
Issue:1
Article Number:50
Note:
7th International conference on Time Series and Forecasting, 19–21 July 2021, Gran Canaria (Spain)
Faculties:Fakultät IuI
DDC classes:000 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Review Status:Veröffentlichte Fassung/Verlagsversion
Collections:Forschungsschwerpunkt / Nachhaltige Technologien und Prozesse
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International