Quantifying Uncertainty for Predicting Renewable Energy Time Series Data Using Machine Learning
Author: | Phil AupkeORCiD, Andreas KasslerORCiD, Andreas TheocharisORCiD, Magnus NilssonORCiD, Michael UelschenORCiD |
---|---|
Title (English): | Quantifying Uncertainty for Predicting Renewable Energy Time Series Data Using Machine Learning |
URN: | urn:nbn:de:bsz:959-opus-68195 |
DOI: | https://doi.org/10.3390/engproc2021005050 |
Parent Title (English): | Engineering Proceedings |
Publisher: | MDPI |
Place of publication: | Basel Switzerland |
Document Type: | Conference Proceeding |
Language: | English |
Year of Completion: | 2021 |
Release Date: | 2024/12/16 |
Volume: | 5 |
Issue: | 1 |
Article Number: | 50 |
Note: | 7th International conference on Time Series and Forecasting, 19–21 July 2021, Gran Canaria (Spain) |
Faculties: | Fakultät IuI |
DDC classes: | 000 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik |
Review Status: | Veröffentlichte Fassung/Verlagsversion |
Collections: | Forschungsschwerpunkt / Nachhaltige Technologien und Prozesse |
Licence (German): | ![]() |