Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks
- We study the transition to synchronization in large, dense networks of chaotic circle maps, where an exact solution of the mean-field dynamics in the infinite network and all-to-all coupling limit is known. In dense networks of finite size and link probability of smaller than one, the incoherent state is meta-stable for coupling strengths that are larger than the mean-field critical coupling. We observe chaotic transients with exponentially distributed escape times and study the scaling behavior of the mean time to synchronization.
Author: | Hans Muller MendoncaORCiD, Ralf TönjesORCiD, Tiago PereiraORCiD |
---|---|
Title (English): | Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks |
URN: | urn:nbn:de:bsz:959-opus-63690 |
DOI: | https://doi.org/10.3390/e25070983 |
ISSN: | 1099-4300 |
Parent Title (English): | Entropy |
Document Type: | Article |
Language: | English |
Year of Completion: | 2023 |
Release Date: | 2024/07/01 |
Tag: | Chaotic maps; Finite size effects; Mean-field analysis; Random networks; Synchronization |
Volume: | 25 |
Issue: | 7 |
Article Number: | 983 |
Page Number: | 11 |
Faculties: | Fakultät IuI |
DDC classes: | 500 Naturwissenschaften und Mathematik / 530 Physik |
Review Status: | Veröffentlichte Fassung/Verlagsversion |
Licence (German): | Creative Commons - CC BY - Namensnennung 4.0 International |