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Abstract—For efficient analysis of large smart city data sets
in (real) time a knowledge-based approach is suggested, con-
straining iteratively the search space while increasing accuracy
by more complex computation. Results are shown for searching
the distance to the nearest object, e.g., parking space.

I. INTRODUCTION

The Internet of Things (IoT) has a high potential to enhance
processes in urban environments and to ease the citizens’ live,
thus enabling smart cities. However, the uptake of smart city
applications is hindered by various issues, such as the difficulty
of integrating heterogeneous data sources and the challenge
of extracting up-to-date information in real-time from large-
scale dynamic data. The European project CityPulse1 addresses
these issues by developing a framework for real-time IoT
stream processing and large-scale data analytics. The frame-
work addresses the issues above by four major concepts: (1)
Virtualisation hides the heterogeneity of the numerous data
and information sources. (2) The large amount of raw data
without intrinsic explanation remains meaningless. To enable
automated machine interpretation the data is semantically an-
notated. (3) Large-scale data analytics tools allow for resource
efficient event detection in multiple data streams. (4) This
data pipeline is controlled by knowledge based reasoning.
This split separates the big data processing with need for
efficiency from the intelligent reasoning employing ontologies
for knowledge representation [1][2]. Reasoning in cities de-
pends heavily on the spatial context. While temperature will
be similar in the neighbourhood, noise propagation will depend
on shielding buildings and traffic flows on road networks,
ongoing construction work, traffic density etc.. Hence, spatial
reasoning requires appropriate distance measures. However,
the integration of large amounts of data sources and the
computational complexity demand for efficient methods to
provide the requested information in (real) time. Therefore this
paper will focus on spatial reasoning. The next sections will a)
briefly review the state of the art, b) discuss different distance
measures, c) outline an iterative approach to bring in context
knowledge constraining the search space and d) employ spatial
interpolation to increase reliability.

II. STATE OF THE ART

Interpolation of spatial data typically utilises variations of
the Euclidean distance to find suitable sources of neighbouring
sensors and to weight their impact[3]. Alternative weighting
methods are utilising further sensor data (like wind data)
[4][5]. This paper proposes the use of available infrastructure
knowledge for sensor data analysis.

1European Union 7th FP under grant agreement n◦ 609035

III. MODELLING DISTANCE

The Euclidean distance between two locations usually
defines a brief coherence if e.g., certain events affect nearby
entities or persons. However, applied in a complex city envi-
ronment this metric does not represent the relevance of nearby
events. Road-networks and encapsulated public transportation
systems have to be considered since the beeline often does not
reflect possible ways or distinct connections that can be used
to reach or affect another location. Figure 1 shows the different
distance models that can be used in the space of a city.

a) The direct radial propagation of an effect issued
on a specific location that results in a Euclidean
distance as a distance model.

b) The consideration of a directed street graph en-
ables a more distinct model for measuring a
distance, interpolating traffic related data and cal-
culating the propagation of traffic-related events.

c) Public Transportation systems like trains allow
only distinct boarding and exit stops, which fur-
ther decrease the flexibility of the public space
and reduce the details of the utilised graph.

Let a distance function d (e.g., Euclidean on a metric
projection where 1 unit is 1 meter) be defined on space X . K
is a set of indices and the tuple (Pk)k∈K of nonempty subsets
(the locations/events) in X . The Voronoi cell, Rk, associated
with the site Pk is the set of all points in X whose distance
to Pk is not greater than their distance to the other sites Pj ,
where j 6= k. The gap-less Voronoi diagram is defined as the
tupel of cells (Rk)k ∈ K. Figure 2 shows the Voronoi cells for
traffic flow sensors, which are deployed in the road network
of the city. The Voronoi cells illustrate that the nearest traffic
sensor is unlikely to represent the condition of the illustrated
street segments.

(a) Euclidean
Distance

(b) Shortest Path
Distance

(c) Reduced
Graph Distance

Fig. 1. Comparison of Spaces to Determine Distances



Fig. 2. Voronoi Diagram - Depicting the Nearest Traffic Sensor (labelled
with a number) and Traffic Condition Value for Every Street Segment Inside
a Voronoi Cell.

DISTANCE MEASURE ACCURACY

To find locations such as nearest parking space or closest
hospital an iterative strategy is suggested reducing candidates
and increasing accuracy and computational complexity step-
wise. While the computation of the Euclidean distance is fast,
the consideration of the road network is more accurate. In a
first step the Euclidean distance can reduce candidates. But for
exact navigation in a city the roadmap is needed.

To analyse the accuracy limits for a real scenario an
infrastructure dataset from the city of Aarhus in Denmark
was investigated, containing a routable graph, 3 hospitals, 13
pharmacies, 25 atms, 36 toilets, 45 waste baskets and 288
parking places in the examined area. For random locations
in the city the Euclidean distance and the routing distance,
calculated with a shortest path algorithm in the cities street
network, have been compared. Table I shows an exemplary
result of the experiment. The column From(lon lat) describes
the starting point of the search; OsmId is OpenStreetMap
identificator of the hospital that was found in the search;
EuclDist(m) shows the Euclidean distance between the starting
point and the hospital in meters; RouteDistance(m) shows the
shortest path, using the street network of the city in meters. In
this example, the first hospital appears to be the nearest one
by utilising the simple Euclidean distance. Taking into account
the road network, the second hospital is 11% nearer then the
first one. Figure 3 shows the overall results of the experiment.
It depicts the error ratio in a list of the nearest 2-5 nearest
objects. If the Euclidean distance order was correct an entry
is marked as correct. If the routing distance alters the order,
the route is marked as incorrect. The experiment was repeated
with 20000 random locations for the 6 objects. Since there are
only 3 hospitals available, the hospital experiment was capped
at a list length of 3. For this experiment one-ways and vehicle
restrictions have been ignored.

The distance difference depends on terrain and road in-
terconnectivity, based on the length of street segments and
the street density. These static measures can be computed in
advance and are used to control the stepwise selection and
computation of distance measures in (real) time.

Order Object From(lon lat) OsmId EuclDist RouteDist
1 hospital 10.19062 56.19125 52592 2665 3422
2 hospital 10.19062 56.19125 10646 2694 3046

TABLE I. EXAMPLE RESULTS FOR MISLEADING DISTANCES
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Fig. 3. Evaluating Euclidean Distance Results with Actual Road Distances

Fig. 4. Evaluation of Pearson Correlation Between Traffic of Parking
Garage and Nearest Traffic Sensors on Streets - Comparison of Euclidean
Distance(left) and Shortest Path Distance(right)

IV. KNOWLEDGE BASED SPATIAL INTERPOLATION

Sensor data is often correlated and can be combined to
increase reliability. Figure 4 shows the Pearson correlation
between parking garage usage and close traffic sensors. The
grey variance area of the regression points out the necessity to
use shortest path distance for reliable sensor fusion. Selecting
sensor pairs by shortest path results in higher correlation
(Pearson correlation, Minkowski distance and Bray–Curtis
dissimilarity) than using the Euclidean distance.
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