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Objective: The cervical mucus plugs are enriched with proteins of known immuno-
logical functions. We aimed to characterize the anti-HIV-1 activity of the cervical
mucus plugs against a panel of different HIV-1 strains in the contexts of cell-free and
cell-associated virus.

Design: A cohort of consenting HIV-1-negative and HIV-1-positive pregnant women in
labour was recruited from Mthatha General Hospital in the Eastern Cape province of
South Africa, from whom the cervical mucus plugs were collected in 6 M guanidinium
chloride with protease inhibitors and transported to our laboratories at �80 8C.

Methods: Samples were centrifuged to remove insoluble material and dialysed before
freeze–drying and subjecting them to the cell viability assays. The antiviral activities of
the samples were studied using luminometric reporter assays and flow cytometry. Time-
of-addition and BlaM-Vpr virus-cell fusion assays were used to pin-point the antiviral
mechanisms of the cervical mucus plugs, before proteomic profiling using liquid
chromatography-tandem mass spectrometry.

Results: The proteinaceous fraction of the cervical mucus plugs exhibited anti-HIV-1
activity with inter-individual variations and some degree of specificityamong different HIV-
1 strains. Cell-associated HIV-1 was less susceptible to inhibition by the potent samples
whenever compared with the cell-free HIV-1. The samples with high antiviral potency
exhibited a distinct proteomic profile when compared with the less potent samples.

Conclusion: The crude cervical mucus plugs exhibit anti-HIV-1 activity, which is
defined by a specific proteomic profile.
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Introduction
Mucosal surfaces lining the internal tracts of the body are
vulnerable to damage byexogenous factors mostly through
air and food intake [1–4]. A thin layerof mucus gel lines the
various mucosae, regulates access of exogenous factors into
the underlying epithelia, and protects against its desiccation
[1]. Crude mucus consists of mucins, nonmucin proteins,
lipids, water (95–97%) and cell debris [1,2]. Mucins are a
large family of heavily glycosylated proteins of high
molecular weight (0.5–20 MDa), which are either
membrane-bound or secreted as gel-forming and non-
gel-forming, depending on their ability to polymerize and
crosslink into a gel [1]. Their genes have been mapped on
several chromosomes across the human genome [3]. Crude
saliva, its purified mucins [4] and mucins purified from
breast milk [5] inhibit HIV-1 in in-vitro assays.

The cervix produces�60 mg of mucus per day, the viscosity
of which changes periodically with fluctuating levels of
oestrogen and progesterone [6], thus regulating access of the
spermatozoa into the uterus. Mucus is receptive or resistant
during the oestrogen-dominant or progesterone-dominant
phases, respectively, with the latter phase blocking access
into the uterus [7]. Antimicrobials in the cervical mucus
strengthen its barrier functions against invading pathogens
[8,9], whereas the constant mucus turnover ensures their
clearance from the female reproductive tract (FRT) [10].
During the early stages of pregnancy, increasing progester-
one levels drive the formation of the cervical mucus plug
(CMP) in the cervix, which blocks bacterial entry into the
uterus, failure of which may cause life-threatening
obstetrical problems [11,12].

The secreted gel-forming mucins – MUC5AC, MUC5B
and MUC6 – make up the cervical mucus [13,14] and are
encoded by a gene cluster (�500 kb) that is located on
chromosome 11p15.5 together with MUC2 [1], the
expression of which in the cervix is controversial [13].
Lying underneath the cervical mucus layer is a glycocalyx,
which is predominantly attributed to the membrane-bound
mucins: MUC1, MUC4 and MUC16 [13,14]. They block
pathogens from invading the underlying epithelium, and
signal underlying immune cells to trigger an immune
response against invading pathogens [15,16]. The expression
levels of MUC4 and MUC5B transcripts are high in the
cervix [17], the latter peaking at mid-cycle [18].

Given the enrichment of the CMPs with antimicrobial
factors [8,9,19], we investigated whether the CMP and its
mucin components had anti-HIV-1 activity in vitro. We
probed samples against a panel of replication-competent
SIVand HIV-1 strains in the contexts of cell-free and cell-
to-cell infections. We found that the CMPs inhibit HIV-1
more potently than the purified mucins, and exhibit a
viral tropism-specific sieve effect and heterogeneity in
terms of their antiviral mechanisms and potency, possibly
driven by a specific proteomic profile.
Methods

Ethics statement
This study was approved by the Human Research Ethics
Committee of the University of Cape Town (HREC
REF: 102/2013) and the provincial health department of
the Eastern Cape (EC_2016RP7_393). The CMPs were
collected with strict adherence to the principles expressed
in the Declaration of Helsinki [20].

Recruitment of participants and sample
collection
Fifty-two pregnant women were recruited from the
maternity unit of Mthatha General Hospital, Eastern
Cape, South Africa; between October 2016 and April
2017. The CMPs were collected in 6M guanidinium
hydrochloride (GuHCl) (Sigma, Kempton Park, South
Africa) with protease inhibitors [21], following sponta-
neous shedding or retrieval during labour.

Preparation of the cervical mucus plugs and
purification of the cervical mucins
The CMPs were prepared as previously described [21].
Mucins were purified by caesium chloride (CsCl) density
gradient ultracentrifugation and Sepharose CL-2B gel
filtration [22]. Samples were adjusted to a density of 1.4 g/
ml with CsCl (Sigma) and 4 M GuHCl (Sigma), and
centrifuged (70Ti rotor) at 40 000 rpm for 48 h at 4 8C in
a Beckman Optimal L-80 XP Ultracentrifuge (Beckman
Coulter, South Africa). Fractionated samples were
analysed for their protein and glycoprotein content using
Bradford and Periodic Acid Schiff (PAS) assays, respec-
tively. The glycoprotein-rich fractions were pooled and
subjected to gel filtration [23], followed by pooling of the
V0 and Vi fractions. All samples were dialyzed against
three changes of distilled water and freeze–dried in a
Labconco (USA) Freeze Dryer.

Sodium dodecyl sulphate polyacrylamide gel
electrophoresis
Samples (100 mg) were reconstituted in 1� SDS buffer
and resolved on 4–20% gradient sodium dodecyl sulphate
PAGE (SDS-PAGE) [24]. The gels were stained separately
with Vacutec Aqua Stain (Vacutec, South Africa) and PAS
(Sigma) for proteins and glycoproteins, respectively.

Immunoblotting
After SDS-PAGE, samples were electro-blotted on to
nitrocellulose membranes using the SV20-SDB system
(Sigma, UK), and subjected to western blot analysis as
previously described [21].

Cell culture and transfections
Unless stated otherwise, HEK293Tand TZM-bl cells were
cultured in Dulbbeco’s Modified Eagle’s Medium (DMEM)
(Sigma, UK) supplemented with 10% foetal bovine serum
(Sigma, UK), 100 units/ml penicillin (Gibco, UK), 100 mg/
ml streptomycin and 2 mmol/l L-glutamine (Gibco, UK).
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PM1 and parental Jurkat T cells were cultured in Roswell
Park Memorial Institute (RPMI) 1640 medium (Sigma,
UK) with the same supplements as mentioned above.
Transfections were performed using CalPhos Mammalian
Transfection Kit (Takara, Frankfurt-am-Main, Germany).
All cell lines were cultured at 37 8C/5% CO2.

Cell viability assays
Samples were reconstituted in 10% DMEM to a final
concentration of 1 mg/ml. TZM-bl cells were treated
with samples for 48 h. 10% SDS (Sigma, Germany) in 1 N
HCl (Sigma, Germany) was used as a positive control to
induce toxicity. Posttreatment, cells were subjected to cell
viability assays using CellTiter Glo Luminescent Cell
Viability Assay Kit (Promega, Germany).

Virus stocks production and titration
HEK293T cells were transfected with pro-viral DNA
encoding either full length SIVmac239 or HIV-1 strains
[25,26]. Production of b-lactamase (BlaM)-carrying HIV-1
was conducted by triple transfection of HEK293T cells with
pYU-2/pNL4.3 (60 mg), pBlaM (20 mg) and pAdvantage
(8 mg) [27,28]. Forty-eight-hour posttransfection, virus-
containing culture supernatantswere concentrated on a 20%
sucrose cushion [25] and titrated on TZM-bl cells using b-
galactosidase-based blue cell assay [25]. HIV-1Ba-L was
obtained from the NIH AIDS reagent (USA), propagated in
PM1 cells [29] and titrated as mentioned above [25].

Luciferase assays
TZM-bl cells were inoculated for 48 h with individual virus
stocks treatedwith two-fold serially diluted samples for 1 h at
37 8C. Postinfection, cells were subjected to luciferase assays
using the Luciferase Assay System (Promega, Germany).

Time-of-addition assays
For pretreatment, TZM-bl cells were incubated with the
CMPs for 1 h at 37 8C, followed by sample removal prior
to infection with HIV-1. For posttreatment, cells were
infected with HIV-1 for 1 h prior to treatment with the
CMPs at 1 : 2 ratio. For co-treatment, HIV-1 was
incubated with the CMPs at 1 : 2 ratio for 1 h prior to
infection. 48 h postinfection, cell lysates were subjected to
luminometric luciferase assays.

b-lactamase fusion assays
The BlaM-carrying HIV-1 strains were incubated with
the samples for 1 h, before infecting TZM-bl cells for 4 h.
Maraviroc (25 mmol/l) and T20 (50 mmol/l) were used as
inhibitors of viral entry and fusion, respectively. The
CCF4 spectral shift was analysed using a multiparameter
LSRll flow cytometry with DIVA software (BD
Biosciences, Germany).

Green fluorescent protein-based cell-free and
cell-to-cell infection assays
Cell-free HIV-1NL4.3-GFP [25] was incubated with the
CMPs (1 mg/ml) for 1 h at 1 : 2 ratio, before infecting
Jurkat T cells for 48 h. To model cell-to-cell transmission,
HEK293T cells were transfected with pro-viral DNA
encoding full length HIV-1NL4.3-GFP, followed by a
medium change after 4 h and incubation for 24 h. On the
next day, virus-producing cells were treated (1 : 2 ratio)
with 1 mg/ml of the CMPs for 1 h and co-cultured with
Jurkat T cells for 24 h. These experiments were
conducted in the absence or presence of efavirenz
(100 nmol/l). Postinfection, green fluorescent protein
(GFP) expression was quantified using a BD FACSCa-
libur flow cytometer (BD Biosciences, Germany).

In-gel protein digestion and liquid
chromatography-mass spectrometry/mass
spectrometry analysis of the cervical mucus plugs
The CMPs (100 mg) were reconstituted in 1� SDS buffer
and boiled at 95 8C for 5 min. Samples were then
alkylated by adding acrylamide to a final concentration of
2%, resolved on 7.5% linear SDS-PAGE [24] and stained
with Bio-Safe Coomassie Stain (Bio-Rad, Germany).
The in-gel digestion and liquid chromatography coupled
with tandem mass spectrometry were conducted as
described elsewhere [30].

Bioinformatics analysis
Raw data from mass spectrometry were processed using
MaxQuant [31], and human UniProt/SwissProt entries
containing common contaminants. Proteins were identified
by a false discovery rate of 0.01 on protein and peptide level,
and quantified by extracted ion chromatograms of all
peptides. The processed data were analysed using Perseus
v1.6.0.7. Missing values were imputed from normal
distribution (width, 0.3; down shift, 1.8). Statistical analysis
was performed using two-sample t test, by comparing LFQ
intensities of proteins in the HIV-1-positive cohort against
the HIV-1-negative cohort [false discovery rate (FDR), 0.5;
s0, 0.1], and group 1 against group 2 (FDR, 0.36; s0, 0.1).
STRING [32] and functional enrichment analysis were
performed on 116 proteins enriched in group 1.

Statistical analysis
One-way ANOVA and student t test were used to compare
the means, whereby the error bars represent mean and
standard deviation (m� SD). Statistical analysis was con-
ductedusingGraphPadPrismv5 (La Jolla,California,USA),
and a P value of 0.05 or less was considered significant. The
flow cytometry data were analysed using FlowJo v10 (Tree
Star, Ashland, Oregon, USA).
Results

Anti-HIV-1 activities of the cervical mucus plugs
and purified mucins in the context of cell-free
infection
We purified mucins from the CMPs collected from HIV-
1-negative and HIV-1-positive pregnant women in
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labour [22] (clinical information in Supplementary Table
1, http://links.lww.com/QAD/C220). Purification pro-
files between samples were comparable, irrespective of the
donor’s HIV-1 status (Supplementary Fig. 1a and b,
http://links.lww.com/QAD/C221). Samples varied in
terms of their electrophoretic patterns within each cohort
(Supplementary Fig. 1c–f, http://links.lww.com/QAD/
C221). MUC5AC and MUC5B were generally detect-
able by immunoblotting among the CMPs (Supplemen-
tary Fig. 1g and h, http://links.lww.com/QAD/C221)
and purified mucins (Supplementary Fig. 1i and j, http://
links.lww.com/QAD/C221), with varying levels of
expression between the individual samples, independent
of the donor’s HIV-1 status. TZM-bl cells treated with
1 mg of CMPs or purified mucins maintained their
viability (Supplementary Fig. 2, http://links.lww.com/
QAD/C222), suggesting no potential toxicity.

The CMPs from both cohorts exhibited antiviral activity
against SIV and HIV-1 strains, independent of the viral
tropism (Fig. 1a and b). This varied between and within
individual samples, with certain samples (5, 18, 32, 39 and
47) showing both antiviral and pro-viral activities,
depending on the infecting strain. Generally, the CMPs
robustly inhibited HIV-1NL4.3, while there was a high
level of heterogeneity for inhibition of HIV-1Ba-L.
SIVmac239 displayed sensitivity to low-dosed CMPs and
resistance to increasing CMP concentration. We used area
under the curve (AUC) to measure viral sensitivity to the
samples [33,34]. Using the cumulative AUCs from all
tests, we found that samples from the HIV-1-positive
cohort were more potent than those from the HIV-1-
negative cohort (Fig. 1c). Furthermore, the X4-tropic
strains of HIV-1 were more susceptible to inhibition than
the R5-tropic HIV-1 strains (Fig. 1d).

Purified cervical mucins inhibited HIV-1 in a dose-
dependent fashion, irrespective of the donor’s HIV-1
status and viral tropism (Supplementary Fig. 3a and b,
http://links.lww.com/QAD/C223). Unlike the CMPs
(Fig. 1a and b), purified mucins showed a consistent
antiviral activity against both HIV-1 strains. Similar to the
CMPs, purified mucins from the HIV-1-positive cohort
were more potent than those from the HIV-1-negative
cohort (Supplementary Fig. 3c, http://links.lww.com/
QAD/C223). However, in contrast to the CMPs, the
R5-tropic HIV-1Ba-L was more susceptible to inhibition
by the purified mucins compared with the X4-tropic
HIV-1NL4.3 (Supplementary Fig. 3d, http://links.lww.-
com/QAD/C223).

Mechanism(s) behind the anti-HIV-1 activities of
the cervical mucus plugs in the context of cell-
free infection
We investigated the possible mechanism(s) behind the
heterogeneous anti-HIV-1 activities of the CMPs by
time-of-addition assays (Fig. 2a). Treating the virus stocks
with the CMPs before incubation with TZM-bl cells (co-
treatment) showed the most potent antiviral activity,
regardless of the donor’s HIV-1 status (Fig. 2b). Addition
of the CMPs to cells 1 h after (posttreatment) and before
(pretreatment) HIV-1 infection showed reduced inhibi-
tion. Overall, the CMPs were inhibitory against HIV-1
across all three conditions when compared with the virus-
only control, and their activity is largely virus-directed,
and not or to a lesser extent cell-directed. To investigate if
the anti-HIV-1 activity of the CMPs and mucins involves
inhibition of virus entry and fusion, we subjected samples
to BlaM-Vpr-based fusion assays. Despite their universal
antiviral activity against HIV-1YU-2 and HIV-1NL4.3

(Fig. 1), not all tested CMPs (Fig. 2c–f) inhibited virus
cell fusion, suggesting that some samples exert postentry
anti-HIV-1 activities. Purified mucins showed a mild to
no inhibition of fusion (Supplementary Fig. 4, http://
links.lww.com/QAD/C224).

Anti-HIV-1 activities of the cervical mucus plugs
in the context of cell-to-cell transmission
HIV-1 can infect target cells through cell-free and cell-to-
cell transmission, with the latter mode being the most
effective one through which HIV-1 spreads in vivo
[35,36]. We investigated the effect of the CMPs on HIV-1
infection of Jurkat T cells (Fig. 3) in cell-free and cell-to-
cell transmission.

In agreement with the luciferase assays (Fig. 1), the CMPs
displayed potent anti-HIV-1NL4.3-GFP activity in cell-free
infection (Fig. 3a and b), which varied in potency
between samples, independent of the donor’s HIV status.
The CMPs also inhibited HIV-1NL4.3-GFP in cell-to-cell
transmission, albeit to a lesser extent than cell-free
infection (Fig. 3c and d). In both conditions, inhibition
was more pronounced in the presence of efavirenz. These
results suggest that HIV-1NL4.3-GFP partially overcame the
barrier functions of the CMPs in the context of cell-to-
cell transmission compared with cell-free infection
(Fig. 3e) [35].

Liquid chromatography-mass spectrometry/mass
spectrometry -based proteomic profiling of the
cervical mucus plugs
We then investigated the proteomic profiles of the CMPs
by SDS-PAGE and label-free quantitative (LFQ) mass
spectrometry. Bio-Safe Coomassie Stain intensified with
decreasing molecular weight of the protein species
(Fig. 4a). Statistical comparison of the abundance of
the CMP proteins between HIV-1-negative and HIV-1-
positive cohorts (Supplementary Data File 1, http://
links.lww.com/QAD/C227) showed 71 proteins that
were significantly upregulated in the HIV-1-positive
cohort, amongst which were MUC1, MUC5AC and
MUC6 (Fig. 4b). Several pregnancy-specific glycopro-
teins (PSGs), protein S and MUC21 were amongst the
significantly downregulated 17 proteins in the same
cohort. An unsupervised hierarchical clustered heatmap
of 88 differentially expressed proteins showed distinct
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Fig. 3. Antiviral activity of the cervical mucus plugs against HIV-1 strains in the context of cell-to-cell infection. Representative
FACS dot plots showing the antiviral activity of the CMPs in the contexts of (a) cell-free and (c) cell-to-cell infections. The FACS data
from (b) cell-free and (d) cell-to-cell infection assays were quantified and presented as the bar graphs. One-way analysis of
variance (ANOVA) was used to compare the means, where the error bars represent the SD from three experiments. (e) Bar graphs
showing a comparison of the cumulative net effects from cell-free and cell-to-cell infection assays. Paired student t test was used to
compare the means, where the error bars represent the SD from three experiments. CMPs, cervical mucus plugs.
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Fig. 4. Proteomic profiling of the cervical mucus plugs from the HIV-1-negative and HIV-1-positive cohorts. (a) Analysis of the
CMPs on 7.5% linear SDS-PAGE following staining with Bio-Safe Coomassie staining. (b) Volcano plot showing significantly
upregulated (71) and downregulated (17) proteins between the two cohorts. The statistical P value (�log10 P) is plotted against the
LFQ intensity difference (log2). (c) Heatmap showing the significantly regulated proteins in the CMPs collected from HIV-1-
negative and HIV-1-positive cohorts following an unsupervised hierarchical clustering. CMPs, cervical mucus plugs.
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proteomic profiles between the two cohorts, with the
exception of two outliers (samples 32 and 48), which
exhibited different proteomic profiles from those in their
respective cohorts (Fig. 4c).

As the donor’s HIV-1 status did not exclusively determine
the anti-HIV-1 potency, we set out to identify a
proteomic profile that defines the anti-HIV-1 potency
of the CMPs. We imputed the cumulative AUCs of each
sample against all the viruses to cluster them into two
groups, independent of the donor’s HIV status, using the
Wilcoxon–Mann–Whitney test. Clustering resulted in
group 1 displaying a significantly lower cumulative AUC
mean compared with group 2, reflecting the differential
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Fig. 5. Proteomic profiling of the potent and nonpotent cervical mucus plugs against HIV-1 infection. (a) Wilcoxon–Mann–
Whitney test analysis of the potent (1) and less potent (2) CMPs against HIV-1 strains in the context of cell-free infection using the
cumulative area under the curve values. (b) Volcano plot showing the significantly upregulated (116) and downregulated (18)
proteins in the CMPs in groups 1 and 2. The statistical P value (�log10 P) is plotted against the LFQ intensity difference (log2). (c)
Heatmap analysis of the significantly regulated proteins between the CMPs from groups 1 and 2, following an unsupervised
hierarchical clustering. (d) STRING analysis showing the diverse protein–protein interactions between significantly upregulated
proteins in group 1. The network is displayed after MCL clustering (inflation parameter 3) and functional enrichment analysis of
proteins within each cluster, with seven largest clusters encircled and annotated by their main description. Full lines demonstrate
interactions within a cluster and dotted lines demonstrate interactions outside the clusters. Line thickness corresponds to STRING
edge confidence. Gene ontology (GO) functional enrichment analysis of the significantly upregulated proteins; (e) GO term
biological process and (f) GO term molecular function. The functional enrichments provided by STRING analysis are plotted
according to their �log10 transformed false discovery rate (FDR). CMPs, cervical mucus plugs.
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anti-HIV-1 potency (Fig. 5a). Statistical comparison
based on this anti-HIV-1 potency grouping (Supplemen-
tary Data File 2, http://links.lww.com/QAD/C228)
showed 116 and 18 proteins that were upregulated and
downregulated, respectively, in group 1 (Fig. 5b).
Strikingly, among significantly upregulated proteins in
group 1 was the well characterized HIV-1 restriction
factor SAMHD1 [37].

An unsupervised hierarchical clustered heatmap of
differentially expressed proteins showed distinct proteo-
mic profiles between the two groups (Fig. 5c). STRING
analysis of 116 upregulated proteins in group 1 showed a
heavily connected network of proteins, which displayed
protein clusters that can potentially drive an anti-HIV-1
response (Fig. 5d). Among the top 14 biological processes
(Fig. 5e) attributed to the 116 proteins are immune
effector process and neutrophil degranulation, which are
part of the antiviral host responses. Molecular functions
(Fig. 5f) attributed to the 116 proteins include the
translational machinery and glycolysis. Collectively, a
distinct proteomic profile defines the differential anti-
HIV-1 potency of the CMPs.
Discussion

Studies of the protection of the FRT against HIV-1
infection largely focused on cervicovaginal fluid [38–41].
The protective properties of the CMP in the cervix are
because of its antimicrobial factors [8,9,19] and viscous
nature through the gel-forming properties of its mucins
[1,10,42]. A previous study reported that the CMPs, from
self-declared HIV-negative donors, did not inhibit HIV-1
in an in-vitro assay but its purified mucins did [21]. We
revisited this topic and found that the CMPs from HIV-1-
negative and HIV-1-positive donors inhibited a panel of
replication-competent SIV and HIV-1 strains more
potently than the purified mucins, and a specific
proteomic profile defines this antiviral potency. There-
fore, we attribute these discrepancies to their use of one
HIV-1 strain and qualitative p24 antigen assay as a
readout. Our study was broad in terms of sample size,
viruses and experiments; and found consistent antiviral
activities across different quantitative readouts.

The CMPs from both cohorts displayed a potent antiviral
activity and strain-specific pro-viral activity (Fig. 1a and
b), suggesting a degree of heterogeneity that is
independent of the donor’s HIV-1 status. The potent
anti-HIV-1 activity of the CMPs from the HIV-1-positive
cohort (Fig. 1c) suggests the potential shedding of anti-
HIV-1 factors into these samples. Enhanced potency
against X4-tropic strains (Fig. 1d) is reminiscent of the
well known selective transmission of R5-tropic viruses
during heterosexual transmission [43–45]. How the
CMPs collected in labour compare with those that are
found during gestation in the context of HIV-1 inhibition
will likely depend on the gestational stage, given the
gradual maturation of the CMP from early pregnancy to
term [46].

In agreement with Habte et al. [21], purified cervical
mucins inhibited HIV-1 in a dose-dependent manner,
irrespective of the donor’s HIV-1 status and viral tropism
(Supplementary Fig. 3a and b, http://links.lww.com/
QAD/C223). The mucins from the HIV-1-positive
cohort also showed enhanced HIV-1 inhibition (Supple-
mentary Fig. 3c, http://links.lww.com/QAD/C223),
possibly through an altered glycosylation profile that
could enhance mucin–virus interactions. Future studies
should include glycome profiling of the mucins from both
cohorts to unravel this potential phenomenon. The
enhanced susceptibility of R5-tropic HIV-1Ba-L to
inhibition by the purified mucins compared with X4-
tropic HIV-1NL4.3 (Supplementary Fig. 3d, http://
links.lww.com/QAD/C223), challenges the proposal
that the electrostatic interactions between the mucins
and the V3 loop of gp120 among the X4-tropic strains
drive the sieve effect reported from the cervical mucus
[43,47].

The potent inhibition of HIV-1NL4.3 by the CMPs during
co-treatment (Fig. 2b) corroborates the barrier functions
of the CMP, which are supported by its orientation in vivo,
with its antimicrobial-rich cellular compartment facing
the microbe-inhabited vaginal canal and the largely
mucoid compartment facing the uterus [9,46], thus
preventing pathogens from invading the foetomaternal
unit and triggering preterm deliveries. The inhibition of
fusion between HIV-1 and TZM-bl cells by certain
CMPs (Fig. 2c–f) is likely because of inhibition of HIV-1
infection at the attachment level. The poor fusion
inhibition from the purified mucins (Supplementary Fig.
4, http://links.lww.com/QAD/C224) corroborates their
relatively mild anti-HIV-1 activity (Supplementary Fig. 3,
http://links.lww.com/QAD/C223).

The CMPs largely phenocopied HIV-1-neutralizing
antibodies [35], by potently inhibiting cell-free HIV-
1NL4.3-GFP (Fig. 3a and b) compared with cell-associated
HIV-1NL4.3-GFP (Fig. 3c and d), which partially subverted
the anti-HIV-1 activity of the CMPs during cell-to-cell
transmission (Fig. 3e). The more potent inhibition seen in
the presence of efavirenz suggests that the GFP signal
detected in the presence of the CMPs came from HIV-1
infection and not just potentially free-floating GFP that
has disassociated from the virions. These data suggest that
the CMPs largely exert virus-directed inhibition
(Fig. 2b). The increased staining intensity of proteins
of lower molecular weight in the CMPs on SDS-PAGE
was observed in both cohorts (Fig. 4a). An upregulation
of MUC5AC by HIV-1 infection has been reported [48],
but not that of MUC1 and MUC6 (Fig. 4b). Interestingly,
the downregulation of MUC21 in the HIV-1-positive

http://links.lww.com/QAD/C228
http://links.lww.com/QAD/C223
http://links.lww.com/QAD/C223
http://links.lww.com/QAD/C223
http://links.lww.com/QAD/C223
http://links.lww.com/QAD/C223
http://links.lww.com/QAD/C224
http://links.lww.com/QAD/C223
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cohort provokes questions about its role in HIV-
1 pathogenesis.

An upregulation of proteins with anti-HIV-1 activity –
mucins [21,49], serpinA3 [50], siglec5 [51] and tetra-
spanins [52] – and possibly entrapped neutralizing
antibodies and antiretroviral drugs in the CMPs, could
contribute to the potent anti-HIV-1 activity seen among
the CMPs from the HIV-1-positive cohort (Fig. 1c). The
downregulation of PSGs among the HIV-1-positive
mothers (Fig. 4b), which maintain maternal immune
tolerance to the semi-allogenic foetal allograft [53], could
explain the common pregnancy complications reported
from this cohort [54]. Likewise, the downregulation of
protein S with anticoagulant activity [55], provides
insights into venous thromboembolic cases that are
common among HIV-positive individuals [56–58].
Together, these data hint towards the possible molecular
mechanisms underlying several disorders that are com-
mon among HIV-positive individuals, and provide a
platform from which we can launch a search of solutions
that could revolutionize the clinical care of HIV-positive
individuals. Donor’s HIV-1 status-based hierarchical
clustering of the CMPs largely reflects the effect of
HIV-1 infection on the proteome of the CMPs (Fig. 4c).

Complementation of the antiviral potency-based cluster-
ing of the CMPs with Wilcoxon–Mann–Whitney test
(P¼ 2.904e-06) (Fig. 5a) sheds light on the proteomic
profile that defines the antiviral potency of the CMPs
(Fig. 5b and c). SAMHD1, ISG15, talin-1 and vinculin
abundance was increased (Fig. 5b), and these proteins
exhibit anti-HIV-1 activity [37,59,60]. Moreover, pro-
teins that drive the cell’s biosynthetic machinery, cellular
amide metabolic process, translational initiation, immune
effector function and glycolysis were upregulated in
samples with high antiviral potency (Fig. 5d and f). This
reflects metabolic plasticity, which is a phenotype
exhibited by HIV-1-infected cells with enhanced anti-
HIV-1 potential and natural control of infection [61].
Therefore, the proteomic profile of the CMPs in group 1
strongly supports their potent antiviral activity [37,60–
62].

In conclusion, CMPs collected from HIV-1-negative and
HIV-1-positive women exhibited a broad and heteroge-
neous anti-HIV-1 activity in the contexts of cell-free and
cell-to-cell infections. This antiviral activity is associated
with a specific proteomic profile, which was enriched
with a spectrum of proteins that can directly and
indirectly counteract HIV-1 infection.
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