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Abstract: Advances in high-throughput DNA sequencing have propelled research into the human
microbiome and its link to metabolic health. We explore microbiome analysis methods, specifically
emphasizing metabolomics, how dietary choices impact the production of microbial metabolites,
providing an overview of studies examining the connection between enterotypes and diet, and
thus, improvement of personalized dietary recommendations. Acetate, propionate, and butyrate
constitute more than 95% of the collective pool of short-chain fatty acids. Conflicting data on
acetate’s effects may result from its dynamic signaling, which can vary depending on physiological
conditions and metabolic phenotypes. Human studies suggest that propionate has overall anti-obesity
effects due to its well-documented chemistry, cellular signaling mechanisms, and various clinical
benefits. Butyrate, similar to propionate, has the ability to reduce obesity by stimulating the release of
appetite-suppressing hormones and promoting the synthesis of leptin. Tryptophan affects systemic
hormone secretion, with indole stimulating the release of GLP-1, which impacts insulin secretion,
appetite suppression, and gastric emptying. Bile acids, synthesized from cholesterol in the liver
and subsequently modified by gut bacteria, play an essential role in the digestion and absorption of
dietary fats and fat-soluble vitamins, but they also interact directly with intestinal microbiota and their
metabolites. One study using statistical methods identified primarily two groupings of enterotypes
Bacteroides and Ruminococcus. The Prevotella-dominated enterotype, P-type, in humans correlates with
vegetarians, high-fiber and carbohydrate-rich diets, and traditional diets. Conversely, individuals
who consume diets rich in animal fats and proteins, typical in Western-style diets, often exhibit the
Bacteroides-dominated, B-type, enterotype. The P-type showcases efficient hydrolytic enzymes for
plant fiber degradation but has limited lipid and protein fermentation capacity. Conversely, the
B-type features specialized enzymes tailored for the degradation of animal-derived carbohydrates
and proteins, showcasing an enhanced saccharolytic and proteolytic potential. Generally, models
excel at predictions but often struggle to fully elucidate why certain substances yield varied responses.
These studies provide valuable insights into the potential for personalized dietary recommendations
based on enterotypes.

Keywords: metabolomics; enterotypes; personalized dietary recommendations; acetate; propionate;
butyrate; tryptophan; bile acids

1. Introduction

In the past two decades, advances in high-throughput DNA sequencing have pro-
pelled research into the human microbiome and its link to metabolic health. Numerous
studies emphasize how changes in the gut microbiota composition correlate with metabolic
disorders like obesity [1,2], Type 2 Diabetes Mellitus (T2DM) [3,4], and cardiovascular
diseases [5,6]. These shifts in the complex microbiome ecosystem result from various
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factors, including age [7], gender [8], geographical origin [9], genetics [10], and environ-
mental influences, such as gastrointestinal transit time [11–13] and medication use [14],
with dietary choices assuming a particularly influential role [15].

To enhance our understanding of the complex interrelationship between dietary
patterns, the gut microbiome, and their impact on host metabolism and health, researchers
have introduced the concept of enterotypes as a valuable classification framework [16,17].
Enterotypes categorize individuals based on the compositional attributes of their gut
microbiota. However, understanding the functional implications of these enterotypes on
host metabolism requires the integration of metabolomics, a systematic discipline concerned
with the study of small molecular compounds or metabolites.

Metabolomics furnishes a comprehensive overview of the spectrum of metabolites
produced by the gut microbiota in response to diet [15,18,19].

In this review, literature research focused on the keywords “diet”, “microbiome analy-
sis”, “metabolomics”, “enterotypes”, “Prevotella”, and “Bacteroides” in the PubMed database.
We examined the literature from 2011 to the present to align with the first paper on en-
terotypes. It is important to note that the methodological section, exploring microbiome
research and connections between diet and microbial metabolites, considers earlier publica-
tions to provide a holistic understanding of the topic.

We delve into microbiome analysis methods, with a specific emphasis on metabolomics.
Additionally, we investigate the impact of dietary choices on the production of microbial
metabolites and offer an overview of studies examining the connection between enterotypes
and diet. Finally, we evaluate how metabolomics can enhance personalized dietary rec-
ommendations, drawing insights from the intricate relationship between enterotypes
and diet.

2. Metabolomic Approaches to Decode Diet–Microbiome Relationships

To understand complex relationships between human nutrition and the composition
of the microbiome, amplicon-based sequencing of 16S ribosomal ribonucleic acid (rRNA)
has been a widely used approach for analyzing microbiome composition. Significant con-
tributions in this area have been made by the Human Microbiome Project initiative, which
played a crucial role in establishing fundamental frameworks for a microbiota analysis [20].
The amplicon-based sequencing involves amplifying hypervariable regions within the
16S gene, unique to specific genera, followed by sequencing. However, it is limited to
sequencing bacteria and archaea and provides restricted taxonomic resolution [21]. As this
technique only allows conclusions about the presence and relative abundances of particular
bacterial genera, it does not reveal insight into their functional potential [22].

As the cost of sequencing has decreased, there has been a notable shift towards
metagenomic analyses of microbes, exemplified by the impactful MetaHIT project [23].
The metagenomic approach not only characterizes the taxonomic composition of a sample
but also reveals its functional metabolic capabilities. For instance, it enables the iden-
tification of genes encoding enzymes responsible for the degradation of specific food
components [24]. However, metagenomics alone cannot provide information about micro-
bial gene expression activity. To address this limitation, researchers increasingly employ
large-scale metagenomics, metaproteomics, and metatranscriptomics to gain deeper in-
sights into how microbial communities respond to changing environmental conditions over
time. Metaproteomics enables a detailed investigation of microbial proteins and provides
insights into expressed genes and microbial functions. In 2008, Verberkmoes et al. first
employed this method, which analyzes the entire set of proteins (proteome) encoded by the
microbes in a sample. High-resolution mass spectrometry combined with liquid chromatog-
raphy enabled the separation and identification of peptide mixtures. By connecting peptide
sequences to genomic databases, specific proteins can be linked to the microorganisms
responsible for producing them [25]. Although only a portion of the protein material is
currently reliably identified, ongoing efforts to standardize and catalog these data enhance
the utility of metaproteomics in studies exploring the meta-omics landscape [26].
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As part of the progression in advanced microbiome analysis techniques, Booijink et al.
conducted the initial metatranscriptome analysis of the human fecal microbiome [27]. Meta-
transcriptomics provides tractable links between the genetic potential of a microbe and
its molecular activity [28]. Metatranscriptomic methods involve sequencing RNA actively
transcribed by a microbial community, presenting more complex technical challenges than
metagenomics, including the maintenance of RNA integrity and the selective isolation
of messenger RNA. Despite these obstacles, the significance of metatranscriptomics in
microbiome research continues to grow [29].

This seamless progression from amplicon-based sequencing through metagenomics
to metaproteomics and metatranscriptomics established a comprehensive foundation for
exploring the microbiome’s functional aspects. However, to gain a truly holistic under-
standing of its role in human health, we delve further into the realm of metabolomics.

Metabolomic techniques provide insight into the overall metabolic status and inter-
actions occurring within the microbiome. A pivotal component of the interaction of the
gut microbiota with the host physiology is the variety of small molecules (metabolites)
produced by the microbial community and the host. Due to the diverse characteristics of
metabolites in terms of size, polarity, and abundance, identifying and quantifying the com-
plete pool of metabolites remains a challenge. Metabolomics employs various technologies
to measure defined sets of known metabolites (targeted metabolomics) or to perform a
comprehensive analysis of the metabolome (untargeted metabolomics).

Targeted metabolomics offers higher sensitivity and more precise quantification by
using internal standards and normalization techniques. Untargeted metabolomics detects
a wider range of metabolites, including previously unknown ones, which can lead to
novel hypotheses about complex metabolic pathways. Combining both untargeted and
targeted metabolomics approaches can provide a comprehensive view of the metabolome.
While handling the vast amounts of data generated by these techniques is challenging,
metabolomics offers a direct and informative way to understand the physiological state of
the host and the interface between the host and its microbiome [30]. Metabolite profiling is
increasingly used in research to understand the effects of specific gut microbial changes
and the impacts of microbiome-derived or host–microbiota co-substrates on human health.
There are several methods to measure microbial metabolites in stool, saliva, urine, blood,
or food [19,30].

Within this array of methods, mass spectrometry (MS) became more popular in sci-
entific studies due to its ability to detect metabolites with high sensitivity, impartiality,
and efficiency [31]. To accurately identify and quantify metabolites in complex biolog-
ical samples, MS is often preceded by chromatographic separation to improve sample
resolution. Gas chromatography–mass spectrometry (GC-MS) is particularly suitable for
volatile metabolites like short-chain fatty acids (SCFAs) but can also handle non-volatile
compounds like sugar metabolites, amino acids, and their derivatives when coupled with
specific chemical derivatization steps. On the other hand, liquid chromatography–mass
spectrometry (LC-MS) is widely used for both non-polar (e.g., bile acids and lipids) and
polar (e.g., purines, amino acids, vitamins) metabolite analyses. LC-MS operates at lower
temperatures and uses gentler ionization methods than GC-MS, making it suitable for
larger, non-volatile, and less stable metabolites [19].

Nuclear magnetic resonance (NMR) spectroscopy is another method used in metabolomics,
albeit with lower sensitivity compared to mass spectrometry. NMR allows the quantification of
abundant metabolites with relatively simple sample preparation and provides structural in-
formation, which is valuable for identifying new microbiota-related compounds. However,
identifying the structure of spectral hits can be challenging due to the diversity of microbial
products, many of which are not well characterized. Both MS and NMR spectroscopy
enable an untargeted metabolite analysis and can be used to trace isotopes to investigate
nutrient assimilation and metabolic activity in the microbiota. Despite these challenges
in characterizing specific metabolic flux within the microbiota using isotopic labeling—a
hurdle arising from the shared presence of many metabolites among the host and various
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microorganisms in the microenvironment [19]—microbiome research has predominantly
centered on analyzing metabolites in serum and feces. However, recent literature high-
lights the significance of also examining the effects of metabolites found in urine [32] and
saliva [33] on overall health. Limiting the assessment to a single biofluid may provide
researchers with a narrow and potentially misleading perspective. A more comprehensive
understanding can be achieved by considering multiple biofluids in these studies [18].

Given the complexity and myriad individual factors that influence the interactions
between the diet, microbiota, and host, it is critical to bring all these data together to provide
the best possible insights and, in the best case, integrate them into public health policy and
dietary recommendations. Combining metabolomics with artificial intelligence (AI) and
machine learning (ML) techniques will revolutionize our understanding of the microbiome
and its importance for personalized medicine, biomarker discovery, drug development, and
nutrition. AI and ML algorithms can help researchers integrate data from various sources,
such as genomics, metagenomics, and metabolomics, to provide a holistic understanding
of microbial communities. This can aid in identifying metabolic pathways, interactions,
and functions within the microbiome [34]. Metabolomics datasets are often characterized
by many variables, making a data analysis and interpretation challenging. Fortunately,
AI techniques offer valuable assistance in this domain by efficiently identifying the most
relevant metabolites for specific research questions. By leveraging AI, researchers can
streamline feature selection, enhancing their ability to extract meaningful insights from
complex metabolomics data. ML models can be harnessed to construct predictive models
that establish connections between microbiome composition, metabolite profiles, and
various health outcomes or disease states. These models, driven by AI, illuminate the
potential roles of the microbiome in numerous physiological processes, shedding light on
previously obscured links between microbial communities and human health [35].

In the realm of metabolomics research, ethical considerations are paramount. Re-
searchers must uphold fundamental principles to ensure the responsible conduct of both
metabolomics methods and AI/ML applications. Privacy and informed consent are founda-
tional. In a metabolomics analysis, researchers must ensure participant privacy and obtain
informed consent when collecting biological samples. Participants must understand how
their biological samples will be used and the potential implications of the research. In an
AI-driven metabolomics analysis, particularly in personalized medicine, individuals should
be informed about how AI algorithms will use their data to shape healthcare decisions.
Obtaining informed consent is crucial for upholding individuals’ rights and autonomy [36].
Industry influence is an overarching ethical issue across these fields. Disclosure of financial
ties and potential conflicts of interest is critical to maintaining transparency and trust
in research and healthcare. Adequate regulatory oversight is necessary to ensure that
industry-driven research and products meet rigorous standards and prioritize public health
over profit. To effectively address these ethical concerns, it is crucial to foster collaboration
among researchers, ethicists, policy makers, and healthcare professionals. Together, they
can develop guidelines, regulations, and best practices that promote the responsible and
equitable advancement of metabolomics, microbial research, and personalized nutrition,
maximizing their benefits for society while minimizing potential risks [37].

3. The Tight Interaction between Diet, the Gut Microbiome, and Its Metabolites

Nutrients significantly impact microorganisms in the gut, either aiding or hindering
their growth. Moreover, certain gut microbes extract energy from specific dietary elements,
giving them a competitive edge. This complex interaction between diet and the gut
microbiome also shapes the production of diverse microbial metabolites, subsequently
affecting our overall health.

3.1. Carbohydrates and Dietary Fiber

Indigestible carbohydrates, obtained from various dietary—mainly plant-based—sources,
play a key role in this process [38,39]. These substances, also known as microbiota-accessible
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carbohydrates (MACs) were defined by Sonnenburg et al. [40]. They include dietary fibers
such as resistant starch, inulin-type fructans, fructooligosaccharides, or pectin. They
reach the colon without being digested because the human body lacks the necessary
enzymes for their degradation. In contrast to humans, the microbiome possesses an array
of glycoside hydrolases and polysaccharide lyases, collectively referred to as carbohydrate-
active enzymes (CAZymes) [15]. In the degradation of complex dietary carbohydrates,
SCFAs are the primary end products, along with the production of CO2 and H2. SCFAs
are arguably the most extensively studied microbial metabolites, with numerous effects
on human metabolism [41,42]. The functions of SCFAs in maintaining host well-being
and influencing health conditions are extensive. SCFAs govern various physiological
and biochemical processes within the body. These include upholding the integrity of
the innate gut barrier at the colonic epithelium and mucus levels [43], regulating gut
motility [41], and controlling the secretion of important gut hormones like Peptide YY
(PYY) [44], serotonin [45], gastric inhibitory peptide [46], and glucagon-like peptide 1
(GLP-1) [47]. Moreover, SCFAs are involved in chromatin regulation [48,49], intricate
gut–brain connections [42], and immune responses [50]. To exert these metabolic effects,
binding to G-protein coupled receptors 41 and 43 (GPR41/43), particularly expressed by
the enteroendocrine L cells, plays a crucial role [41]. Acetate, propionate, and butyrate
constitute more than 95% of the collective pool of SCFAs. They are found in the intestinal
tracts of humans at a proportionate molar ratio of approximately 60:20:20. Outside the
colon, this ratio changes to 180:5:1, indicating that most propionate and butyrate are used
where they are produced. However, this ratio shifts in individuals consuming Western
diets high in fat and low in fiber, resulting in lower peripheral acetate levels [51]. This
change is significant due to acetate’s role in metabolic diseases, particularly T2DM. Acetate
is synthesized by most enteric bacteria through the pyruvate-to-acetyl-CoA pathway and
by bacteria such as Blautia hydrogenotrophica, Clostridium, and Streptococcus spp. through
the Wood–Ljungdahl pathway [52–54]. The health effects of acetate are debated. Some
studies link it to reduced appetite and weight loss via GPR41/43 interaction [55] and
enhanced insulin sensitivity [56], while others suggest its role in promoting obesity as
a substrate for the liver [57] and adipose tissue fat [58] production. Some studies even
associate acetate with cancer cell survival under hypoxic conditions [59]. The conflicting
data on acetate’s effects may result from its dynamic signaling, which can vary depending
on physiological conditions and metabolic phenotypes [51,60]. Propionate is produced
by Bacteroides spp., Phascolarctobacterium succinatutens, Dialister spp., and Veillonella spp.
through the succinate pathway and via the acrylate pathway by Megasphaera elsdenii,
Coprococcus catus, Salmonella spp., Roseburia inulinivorans, and Ruminococcus obeum [52–54].
Colonocytes use propionate for intestinal gluconeogenesis via the free fatty acid receptor
3 (FFAR3) signaling pathway, or is absorbed into the portal system and taken to the liver
for hepatic gluconeogenesis [61]. Human studies suggest that propionate has overall anti-
obesity effects, as it can increase post-prandial GLP-1 and PYY levels, reduce weight gain,
intra-abdominal fat, and intrahepatocellular lipid content, and prevent insulin sensitivity
issues [61]. Propionate also exhibits anti-inflammatory properties by reducing the release
of interleukin-8 (IL-8) and tumor necrosis factor α (TNF-α) from neutrophils [62]. Of all
the SCFAs produced in the gastrointestinal tract by fermentation, butyrate is particularly
noteworthy. It has garnered extensive attention in scientific research due to its well-
documented chemistry, cellular signaling mechanisms, and various clinical benefits [51].
Butyrate can be converted via the condensation of two molecules of acetyl-CoA and
subsequent reduction to butyryl-CoA via the classical pathway by phosphotransbutyrylase
and butyrate kinase. Butyryl-CoA can also be converted to butyrate via the butyryl-
CoA/acetate-CoA transferase pathway. Important butyrate-producing genera and species
are Coproccocus genus, Anaerostipes spp., Eubacterium genus, Faecalibacterium prausnitzii, and
Roseburia spp. [52,54,63]. Butyrate serves as the primary fuel source for mature colon cells,
supporting colon health, and acts as a microbial metabolite with strong anti-inflammatory
properties, both locally and systemically [64]. Additionally, butyrate plays a crucial role
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in regulating local and systemic immunity [65], maintaining mucosal integrity [66], and
inhibiting cellular-level neoplastic changes [64]. Butyrate, similar to propionate, has the
ability to reduce obesity by stimulating the release of appetite-suppressing hormones and
promoting the synthesis of leptin [67].

3.2. Proteins and Amino Acids

When fermentable fibers become scarce, microbes adapt by utilizing less favorable
energy sources for their growth, such as amino acids from dietary or endogenous proteins
or dietary fats [68]. Although most of the protein absorption in humans occurs in the
small intestine, about 5–10% of dietary protein is not absorbed through the ileum and
enters the colon as proteins and peptides [69,70]. The extent to which the gut microbiota
utilize amino acids depends primarily on substrate availability and the luminal milieu. For
example, increased pH in the colon [71] and decreased availability of carbohydrates [72] are
associated with increased rates of bacterial fermentation of proteins. Among the bacteria
exhibiting proteolytic properties are genera such as Bacteroides, Clostridium perfringens,
Propionibacteria, Streptococci, Bacilli, and Staphylococci [70,73]. The primary pathway of amino
acid fermentation in the colon involves deamination, producing SCFAs and ammonia. The
liver converts ammonia into urea, which is excreted in urine. The degradation of proteins
by the microbiota results in significantly lower production of SCFAs than that derived
from carbohydrates [70]. Approximately 30% of the substrates are converted into short
SCFAs and branched-chain fatty acids (BCFAs) such as isobutyrate, 2-methylbutyrate,
and isovalerate, as well as intermediates such as lactate and succinate. These are often
used as indicators of protein fermentation. There is limited knowledge about the role of
BCFAs in humans and metabolic health [41,74]. However, recent research has highlighted
the importance of their precursor compounds, branched-chain amino acids (BCAAs), in
obesity, insulin resistance, and T2DM. Elevated BCAA levels in the blood are linked to
insulin resistance across diverse populations and regions. They tend to co-occur with other
metabolites like aromatic amino acids (phenylalanine and tyrosine) and acylcarnitines, all
of which indicate an excess of BCAAs in the body through different processes [75,76].

While the microbial degradation of the BCAAs valine, leucine, and isoleucine is associ-
ated with rather negative effects, recent data suggest that tryptophan metabolites, derived
from dietary sources such as meats and nuts, play a significant role in maintaining intestinal
health [19]. Tryptophan is one of the nine essential amino acids humans cannot synthesize
and must obtain by dietary protein sources. The small amount that does reach the colon is
converted into indole, various indole derivates, serotonin, and kynurenine under the direct
or indirect control of the microbiota [77]. Tryptophan metabolites exhibit diverse functions,
such as antimicrobial properties against various bacteria and parasites [78], modulation of
the immune system through the aryl hydrocarbon receptor (AHR) [79], and preservation
of intestinal balance by promoting mucous production and goblet cell differentiation [78].
They also affect systemic hormone secretion, with indole stimulating the release of GLP-
1, which impacts insulin secretion, appetite suppression, and gastric emptying. Indole
propionic acid (IPA) acts as an antioxidant by scavenging free radicals [65].

3.3. Dietary Fat and Bile Acids

In the past, experts underestimated the influence of dietary fat on the gut microbiota,
believing that most fat digestion and absorption occurred in the small intestine and little
to no dietary fat reached the colon in healthy individuals. This belief was rooted in the
understanding that bacterial populations in the digestive tract increased as one moved from
the small intestine to the colon, making significant interaction between dietary fat and gut
microbiota seem unlikely [80]. Recent research has challenged the idea that dietary fat does
not affect the gut microbiota. Gabert et al. (2011) have shown that a substantial portion
(approximately 7%) of dietary fatty acids labeled with carbon-13 are excreted in the stools
of healthy individuals. Interestingly, more than 86% of these excreted fatty acids are free
fatty acids, indicating that digestion failure is not the cause of fat in stool. Digestive lipases
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can break down triglycerides into free fatty acids. These findings suggest that dietary fat
significantly impacts the gut microbiota, contradicting prior assumptions [81].

A diet rich in fat can significantly modify the composition of the gut microbiota, re-
sulting in an overrepresentation of bacteria that express lipopolysaccharides (LPSs) [82].
This results in a pro-inflammatory condition known as metabolic endotoxemia. Metabolic
endotoxemia, characterized by elevated levels of LPS in the bloodstream, leads to pro-
inflammatory responses in both mice and humans. This inflammatory state is mediated
through toll-like receptor 4 (TLR4) and CD14 in hematopoietic cells, culminating in weight
gain, increased adiposity [83], elevated inflammatory markers in white adipose tissue
(WAT) macrophages [84], and insulin resistance [85]. Simultaneously, metabolic endotox-
emia is associated with increased gut permeability, possibly due to reduced expression of
genes encoding tight junction proteins [86–88]. Intriguingly, these adverse effects appear
to be specific to saturated fat consumption. Mice fed a diet rich in lard (saturated fat)
exhibit an overabundance of specific bacterial taxa, including Bacteroides, Turicibacter, and
Bilophila spp., which can promote WAT inflammation, adiposity, and impaired insulin
sensitivity [89]. Mice on an unsaturated-fish-oil-rich diet exhibit an expansion of Bifidobac-
terium, Akkermansia, and Lactobacillus spp., with no discernible metabolic impairments. The
transplantation of these distinct microbial compositions into germ-free mice replicates the
respective metabolic phenotypes, underscoring the pivotal role of the gut microbiota in
mediating the differential effects of dietary fat types on host health [89]. SCFAs’ beneficial
effects in the context of fiber intake were previously explained. Studies describing the
relationship between dietary fat and SCFAs provide partly contradictory results. Fava
et al. reported humans consuming a saturated-fat-rich diet with higher levels of fecal
SCFAs were associated with lower fecal energy content, suggesting that dietary fat can
contribute to obesity by increasing energy harvest [90]. However, it is essential to note
that this observation lacks direct evidence linking SCFAs to weight gain. A high-fiber diet,
which also raises SCFA levels, is associated with reduced weight gain in humans [91]. The
relationship between SCFAs, dietary fat, and obesity is multifaceted and not completely
understood. Additional research is needed to clarify the precise role of SCFAs in metabolic
syndrome and their interaction with dietary fat compared to fiber intake.

To facilitate the absorption and excretion of dietary fats, bile acids (BAs) are needed
for solubilization by micelle formation in the small intestine. Not only do bile acids play an
essential role in the digestion and absorption of dietary fats and fat-soluble vitamins, but
they also interact directly with intestinal microbiota and their metabolites [92]. Bile acids
are synthesized from cholesterol in the liver and subsequently modified by gut bacteria.
Approximately 95% of bile acids are reabsorbed in the distal ileum and returned to the
enterohepatic circulation. However, bacterial deconjugation, dihydroxylation, and dehydro-
genation prevent their reabsorption into enterocytes, allowing about 5% of BAs to proceed
into the colon. In the colon, these primary BAs (e.g., cholic acid and chenodeoxycholic
acid) interact with the gut microbiota, leading to the conversion into secondary bile acids,
including deoxycholic acid (DCA) and lithocholic acid (LCA) [93]. Over 50 different BAs
have been characterized as products of the interaction between primary BAs, with DCA
and LCA being the two most common [94]. Maintaining a balance between primary and
secondary bile acids is crucial for host health, as an imbalance can harm the organism.
These factors influence the balance, including the host’s microenvironment, antibiotic expo-
sure, diet, and microbiota composition. High-fat diets result in elevated levels of secondary
bile acids in the feces and influence how the gut microbiota processes bile acids. This leads
to changes in the overall bile acid composition, affecting the activation or inhibition of the
bile acid receptor called farnesoid X receptor (FXR) [95]. Recent research suggests that FXR
plays a central role in regulating how bile acids influence the development of intestinal
tumors, integrating factors such as diet, the microbiome, and genetic predisposition in the
risk of hepatocellular carcinoma and colorectal cancer [96].
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3.4. Plant- and Animal-Derived Bioactive Compounds

Apart from fiber, plants also contain a diverse group of bioactive compounds in our
diet, with polyphenols being one of the most significant groups, several of which are linked
to various health benefits. These compounds are ubiquitous in dietary sources like fruits,
vegetables, grains, tea, coffee, and wine [97,98]. Systematic classification groups polyphe-
nols into distinct phytochemical families based on shared structural features, including
phenolic acids, flavonoids, lignans, lignins, coumarins, and stilbenes. The structural com-
plexity of polyphenols is remarkable, with over 9000 distinct flavonoids alone identified,
underscoring their structural diversity [99]. Due to their structural complexity, only a
limited portion, approximately 10%, of dietary polyphenols are metabolized and absorbed
in the small intestine. The remaining 90% continue to the lower gastrointestinal tract,
undergoing significant modifications and degradation by the gut microbiota, ultimately
enhancing their absorption and bioavailability [100]. Studying polyphenols has been chal-
lenging due to the intricacies of their structures and their limited bioavailability. However,
evidence suggests that these compounds impact the composition and function of the gut
microbial community [99]. Dietary polyphenols exert their effects through various mecha-
nisms, including anti-inflammatory, antioxidant, and antimicrobial properties, and have
been associated with positive outcomes in conditions such as cardiovascular disease [101],
cancer [102], metabolic disorders [103], Alzheimer’s disease [104], and inflammatory bowel
disease [105]. An intriguing hypothesis is that these compounds can have measurable
physiological effects despite their low bioavailability, owing to substantial modifications of
the parent compounds by the gut microbiota [99].

In addition to nutrients primarily present in plant-based foods, nutrients predomi-
nantly sourced from animal-derived foods, such as red meat, poultry, fish, and eggs, also
interact with the intestinal microbiome. The gut microbiome is vital in metabolizing nutri-
ents like choline, betaine, and l-carnitine into trimethylamine (TMA). TMA is transported to
the portal circulation and undergoes subsequent oxidation to form trimethylamine-N-oxide
(TMAO) [106]. Li et al. (2022) updated 24 meta-analyses that analyzed the association
between circulating TMAO concentration and health outcomes by including 82 additional
studies. They identified six associations, including all-cause mortality, cardiovascular dis-
ease mortality, major cardiovascular events, hypertension, T2DM, and glomerular filtration
rate, which exhibited particularly strong and compelling evidence [107]. The precise mecha-
nism by which TMAO influences this context remains somewhat unclear. In rodent models,
dietary TMAO or its precursors have been shown to accelerate arteriosclerosis and platelet
aggregation [108]. Conversely, mice specifically fed L-carnitine [109] and choline [110]
diets to increase plasma TMAO levels were found to have reduced aortic arteriosclerosis,
suggesting potential differences in downstream effects from various nutrient precursors.

4. Interindividual Differences in Microbial Responses to Diet According to Enterotypes

Given the complex interplay between a host organism, its resident microbiota, and
how it reacts to various dietary elements, it becomes clear that a one-size-fits-all approach
to diet is not feasible. The idea of personalized medicine, which recognizes individual
variations, should also be implemented when creating tailored dietary plans due to the nu-
merous variables involved [111]. Integrating precision nutrition approaches can decrease
variability in outcomes among individuals, a recurrent challenge of nutrition research.
Inconsistent results can obscure the assessment of nutritional interventions. Grouping indi-
viduals with divergent responses results in an underestimation of the effect magnitude and
introduces substantial fluctuations. Precise nutrition aids researchers in comprehending
factors contributing to diverse reactions to dietary interventions, facilitating tailored stud-
ies for metabolic heterogeneity [112]. Emerging developments in personalized nutrition
have unveiled that how an individual’s metabolism reacts to specific foods is distinctly
personal and intricately linked to the composition of their gut microbiota. In this context,
an efficient approach would involve categorizing individuals based on their gut microbiota
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composition to enhance our understanding of how different people respond to diets, thus
facilitating the navigation of the intricacies of the microbiota.

In 2011, Arumgam et al. introduced the concept of enterotypes as an approach to
stratify microbiota composition. By analyzing 33 qualified samples from diverse popu-
lations, including Europeans, Americans, and Japanese people, researchers successfully
classified the samples into three distinct and robust clusters, primarily based on the pres-
ence and abundance of unique genera. Enterotype 1 featured the dominance of Bacteroides,
along with covariant taxa such as Parabacteroides, Alistipes, and Bilophila. Enterotype 2,
in contrast, displayed an inverse relationship with Bacteroides, featuring a higher preva-
lence of Prevotella, along with covariant bacteria such as Desulfovibrio and, occasionally,
Succinivibrio. Enterotype 3 was primarily associated with Ruminococcus and co-occurring
taxa, including Akkermansia and Methanobrevibacter. They extended their analysis of en-
terotypes to two additional datasets: 85 metagenomes from Danish individuals [113] and
154 pyrosequencing-based 16S sequences from American individuals [114]. Their findings
indicated that these datasets also exhibited the characteristic three-cluster division. The
third cluster displayed distinct characteristics, mainly driven by related Clostridiales groups,
including Blautia and unclassified Lachnospiraceae [16]. In a separate study, Liang et al. ana-
lyzed 181 fecal samples from adults in Taiwan, China, revealing three distinct enterotypes
within the population. Two of these enterotypes resembled patterns associated with Bac-
teroides and Prevotella. However, a third unique enterotype specific to the Asian population
emerged, characterized by a prevalence of the Enterobacteriaceae family of bacteria. Liang
et al. analyzed the diversity of microbial communities using three different clustering
methods and produced nine different diversity matrices. These matrices resulted in vary-
ing counts of enterotypes based on evaluation criteria [115]. Additional studies support
these findings, as they also classified the microbiota into primarily two main enterotypes
associated with Bacteroides and Prevotella [116–118]. Prevotella and Bacteroides are often
negatively correlated to each other, suggesting a competition for nutrients in the intestinal
ecosystem between these two genera [119,120]. These findings highlight the versatility of
the enterotype methodology, which appears to apply to various populations, seemingly
independent of factors such as age, gender, cultural background, and geographic location.
When analyzing the gut microbiota composition in diverse global populations, a consistent
association between Enterotype 1 and Enterotype 2 with other bacterial groups is notably
absent [121]. However, regional dietary distinctions likely contribute to subgroups within
the enterotypes. This concept gains support from the consistent prevalence of Bifidobac-
terium within the Bacteroides enterotype, notably observed in Japan [122]. Following the
results presented by Gu et al. [123], the augmentation of Bifidobacteria confers advantages
to the Bacteroides enterotype regarding plasma bile acids and various metabolic parameters,
including fasting blood glucose, insulin, and C peptide. Crucially, neither of the enterotypes
appears to exhibit a specific vulnerability to disease in general, as both categories have
shown equal associations with various health conditions [124,125]. But it is plausible that
subgroups within the Bacteroides type may exhibit a lower bacterial load, a factor proposed
as a key driver in Crohn’s disease [126].

Categorizing enterotypes based on compositional patterns has gained significant
prominence in recent years. It offers the promise of simplifying the intricate landscape of
the gut microbiome. Moreover, this classification opens new avenues for microbiota-based
diagnostics, therapeutic interventions, disease prevention strategies, and personalized
dietary recommendations [127]. They are akin to densely populated areas in the complex
multidimensional space of microbial communities, and their relevance continues to fuel ex-
tensive discourse within the scientific community. Jeffery et al. [128] and Knights et al. [129]
highlighted that the microbiome often exhibits continuous gradients of dominant microbial
taxa, challenging the idea of rigidly defined enterotypes. Identifying discrete clusters in
high-dimensional data is a complex task, requiring robust statistical tests. Variations in
dominant genera, like Bacteroides and Ruminococcus, often manifest as a continuous spec-
trum within and between putative enterotypes. Even when distinct effects are observed,
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as with Prevotella, significant variation persists within these suggested clusters [129]. In
response to these intricate challenges, Costeas et al. performed an extensive meta-analysis
to reconcile conflicting viewpoints regarding enterotypes. Their analysis resulted in a
modified concept of enterotypes, offering a more nuanced and adaptable perspective in
microbiome research [127]. Koren and colleagues reported that the methodology signifi-
cantly impacts the categorization of populations into enterotypes, with distance metrics and
clustering score methods exerting the most substantial influence. They recommend using
at least one absolute scoring method in conjunction with 2–3 different distance metrics
to validate the presence of enterotypes. Currently, there is no widely accepted consensus
on precisely defining an enterotype. Researchers working with the concept may reach
opposing conclusions regarding enterotype presence if they apply different criteria, even
when analyzing the same data. To enhance the practical utility of the enterotype concept,
standardization in enterotyping methods is necessary, particularly to benefit microbial
ecologists and clinicians interested in this field [130]. However, some promising studies
suggest that enterotypes may aid in predicting dietary responses.

In 2011, Wu et al. were among the first to explore the connections between dietary
variables and enterotypes. They conducted a cross-sectional analysis with 98 healthy vol-
unteers, obtaining 16S rRNA sequencing data from stool samples. They collected dietary
information from participants through dietary recalls and evaluated long-term habits using
a food frequency questionnaire. Additionally, they conducted a controlled-feeding study
involving ten individuals following either a high-fat/low-fiber or a low-fat/high-fiber diet
for 10 days. Following the methodology introduced by Arumugam et al., the researchers
explored the potential categorization of the study population into distinct clusters. Vari-
ous statistical methods were employed, with most indicating only two groupings where
Bacteroides and Ruminococcus enterotypes merged. The feeding study demonstrated micro-
biome composition changes within 24 h, while the enterotype identity remained constant
during the intervention [17]. This effect seems to apply not only to short-term studies but
also to long-term studies. A 6-month randomized controlled intervention study confirmed
this result. They instructed sixty-two obese subjects, aged between 18 and 65, to choose
between following the new Nordic diet recommendations or adhering to the average Dan-
ish diet, and no alterations in the enterotypes were detectable [119]. Notably, enterotypes
strongly correlate with individuals’ long-term dietary patterns. The Prevotella-dominated
enterotype (P-type) in humans correlates with vegetarians, high-fiber and carbohydrate-
rich diets, and traditional diets. Conversely, individuals who consume diets rich in animal
fats and proteins, typical in Western-style diets, often exhibit the Bacteroides-dominated
enterotype (B-type). The functional differences between the two enterotypes emphasize this
observation. The P-type showcases efficient hydrolytic enzymes for plant fiber degradation
but has limited lipid and protein fermentation capacity. Conversely, the B-type features
specialized enzymes tailored for the degradation of animal-derived carbohydrates and
proteins, showcasing an enhanced saccharolytic and proteolytic potential [127,131,132].
In vitro studies have also observed functional distinctions, particularly when examining
dietary fibers of different chemical structures. Upon exposure to arabinoxylans derived
from grain bran, fecal samples associated with the P-type enterotype demonstrate elevated
production of short-chain fatty acids, notably propionate, in contrast to the B-type sam-
ples [118]. P-type specimens exhibit a diminished capacity for growth when subjected to
primary carbohydrate substrates, such as soluble starch, pectin, and xylan, in stark contrast
to their B-type counterparts [133].

Researchers are increasingly basing their investigations on these findings. A research
group from Denmark observed these functional differences in a series of human dietary
intervention studies. They report that the Prevotella to Bacteroides ratio (P/B ratio) is closely
related to alterations in body fat [134–136] and weight [135–139] (Table 1). A caloric deficit
of 500 kcal for 24 weeks led to more significant weight and body fat loss in individuals
with a high P/B ratio, while weight loss significantly correlated with fiber intake [135].
Similar observations were made by Zou et al. A 3-week calorie restriction also resulted
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in a higher BMI loss in P-type individuals [140]. A high-fiber diet, characteristic of tradi-
tional dietary patterns in P-type individuals, likely results in more efficient and substantial
weight loss [134,136–139,141]. Kovatcheva-Datchary et al. additionally demonstrated that
a barley kernel had a positive impact on glucose and insulin metabolism in high-Prevotella
individuals. A metagenomic analysis confirmed this by revealing that Prevotella copri
exhibited an increased potential for fermenting complex polysaccharides after the inter-
vention [142]. These studies focused on the differential response to dietary interventions
concerning anthropometric, metabolic, and metagenomic outcomes. Investigations exam-
ining the effects of enterotypes on metabolic responses using metabolomics approaches
are still uncommon. A large-scale cross-sectional study by Wu et al. (n = 1199) used a
pipeline to predict metabolic microbial functions. P-type individuals showed elevated
metabolic activity involving propanoate, starch, and sucrose, which aligns with findings
from in vitro studies. On the other hand, B-type individuals exhibited improved fatty
acid metabolism [143]. Kang et al. also employed the pipeline to predict metabolomic
microbial functions and examined SCFAs in fecal samples. They also measured incretin
hormones—GLP-1 and gastric inhibitory polypeptide (GIP)—and the hunger hormone
ghrelin in twelve non-obese adults who followed a low- and high-capsaicin diet for 6 weeks.
The response to the intervention varied depending on the enterotype. The intervention
increased GLP-1 and GIP concentrations while decreasing ghrelin concentrations in P-type
individuals. Higher GLP-1 and GIP concentrations are associated with increased satiety
and improved insulin and glucose metabolism. Reduced ghrelin levels are also associ-
ated with decreased hunger and increased satiety. In B-types, the intervention resulted in
higher Faecalibacterium abundances and higher butyrate concentrations [110]. In this case, a
metagenomic study providing information on the pathways of both enterotypes and an
additional examination of SCFAs in plasma for more insights into systemic effects would
be helpful. Metabolomic profiling of serum and urine samples was applied in a study by
Shin et al., comparing three different dietary forms in a 4-week cross-intervention study. In
P-type individuals, isoleucine levels decreased after traditional nutrition, suggesting an
altered BCAA metabolism. After the recommended American diet, acetate concentration in
P-types increased, which might result from sufficient fiber intake. Serum carnitine levels
increased significantly only in B-type individuals, which suggests an adapted metabolism
for animal-based foods. An elevated concentration of urinary dimethylamine, likely re-
sulting from the breakdown of carnitine, further supported this observation [144]. Hur
et al. conducted an untargeted and targeted metabolomic analysis of serum samples. The
traditional diet led to a reduction in body weight in both P-type and B-type. However,
this decrease in body weight was associated with a loss of muscle mass in P-type but not
in B-type. Furthermore, the traditional diet led to reduced serum lipid and amino acid
concentrations in comparison to the control diet in both enterotypes. The decline in these
concentrations was more significant in the P-type than in the B-type [141].
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Table 1. Characteristics of studies exploring enterotypes and dietary associations.

Author Nutritional
Intervention Duration Study Design Method Participants Results

Wu et al. (2011)
[17] Cross-sectional 16S rRNA sequencing Healthy volunteers

(n = 98)

B-type: associated with protein and animal
fat
P-type: associated with carbohydrates

Wu et al. (2011)
[17]

High-fat/low-fiber diet
Low-fat/high-fiber diet 10 days Randomized controlled

dietary intervention

16S rRNA sequencing
and shotgun
metagenomics

Healthy volunteers
(n = 10)

Microbiome composition changed within
24 h
Enterotype remained stable

Roager et al. (2014)
[119]

New Nordic diet high in
fiber or average Danish
diet

26 weeks
Post hoc analysis of a
randomized controlled
dietary intervention

16S rRNA sequencing

Participants with
increased waist
circumference
(n = 62)

No change in enterotypes or selected
bacterial taxa
High P/B group had higher total plasma
cholesterol concentrations (p < 0.05)

Hjorth et al. (2018)
[134]

New Nordic diet high in
fiber or average Danish
diet

26 weeks
Post hoc analysis of a
randomized controlled
dietary intervention

16S rRNA sequencing

Participants with
increased waist
circumference
(n = 62)

High P/B group had greater body fat loss
under new Nordic diet (p < 0.001)

Kovatcheva-
Datchary et al.
(2015)
[142]

White wheat flour bread
or barley-kernel-based
bread

3 days each Randomized cross-over
dietary intervention

16S rRNA sequencing
and shotgun
metagenomics

Healthy volunteers
(n = 39)

High P/B ratio benefits response to barley
kernels (p < 0.05)
Prevotella copri had increased potential of
fermenting complex polysaccharides after
barley-kernel intervention (p < 0.05)

Hjorth et al. (2019)
[135]

500 kcal/d energy deficit
diet 24 weeks Randomized controlled

dietary intervention 16S rRNA sequencing Overweight participants
(n = 52)

High P/B ratio had greater weight
(p < 0.001) and body fat (p = 0.005) loss
High correlation between fiber intake and
weight change in high P/B ratio (p < 0.001)

Zou et al. (2020)
[140]

Calorie restriction
(60% of recommended
daily intake)

3 weeks Uncontrolled dietary
intervention

Targeted metabolic
profiling and shotgun
metagenomics

Non-obese, healthy
adults
(n = 41)

P-type: higher BMI loss (p < 0.05)
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Table 1. Cont.

Author Nutritional
Intervention Duration Study Design Method Participants Results

Kang et al. (2016)
[116]

Low-capsaicin and
high-capsaicin diet
intervention

6 weeks Controlled dietary
cross-over intervention

16S rRNA sequencing,
predicted metabolic
activities and SCFAs in
fecal samples

Non-obese, healthy
adults
(n = 12)

P-type: intervention led to increased
plasma GLP-1 and gastric inhibitory
polypeptide and decreased ghrelin
concentrations (p < 0.05)
B-type: intervention led to higher
Faecalibacterium abundance and butyrate
concentration (p < 0.05)

Wu et al. (2021)
[143] Cross-sectional

16S rRNA sequencing,
predicted metabolic
activities

Adults with and without
metabolic syndrome
(n = 1199)

P-type: linked to rice-based diet and higher
metabolism of propanoate, starch, and
sucrose (p < 0.05)
B-type: linked to Western-style diet and
enhanced fatty acid metabolism (p < 0.05)
Both enterotypes associated with higher
lipopolysaccharide biosynthesis activity
(p < 0.05)

Shin et al. (2019)
[144]

Typical Korean diet
(TKD), typical American
diet (TAD), and
recommended American
diet (RAD)

Each diet
for 4 weeks

Randomized cross-over
intervention

16S rRNA and
metabolome profiling
of serum and urine
samples

Healthy, overweight
adults
(n = 54)

P-type: TKD decreased serum isoleucine,
RAD increased serum acetate (p < 0.05)
B-type: TAD increased serum carnitine,
TAD decreased urinary dimethylamine

De Moraes et al.
(2017)
[145]

Cross-sectional
16S rRNA sequencing
and shotgun
metagenomics

Adults with BMI <
40 kg/m2

(n = 268)

P-type: higher amount of vegetarians
(p = 0.04) and lower LDL-c concentration
(p = 0.04) and bacteria, including
Eubacterium, Akkermansia, Roseburia, and
Faecalibacterium, linked to improved
cardiometabolic profiles (involving BMI,
HDL-c, 2 h glucose, waist, and insulin
levels) (p < 0.05)

Christensen et al.
(2020)
[146]

Wheat-bran extract rich
in arabinoxylan
oligosaccharides
(AXOSs) and PUFA from
fish oil capsules

4 weeks
Post hoc analysis of a
randomized cross-over
dietary intervention

16S rRNA sequencing
and shotgun
metagenomics

Overweight adults with
at least one criterion for
metabolic syndrome
(n = 29)

Low P/B group gained weight after AXOS
consumption (p = 0.009)
Bacteroides cellulosilyticus abundance
predicted weight gain with better precision
than P/B ratio (FDR p = 0.07)
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Table 1. Cont.

Author Nutritional
Intervention Duration Study Design Method Participants Results

Hjorth et al. (2020)
[137]

New Nordic diet high in
fiber or average Danish
diet

26 weeks
Post hoc analysis of a
randomized controlled
dietary intervention

16S rRNA sequencing

Participants with
increased waist
circumference
(n = 62)

Combination of low salivary amylase gene
copy number and baseline P/B ratio
promising predictor for weight loss under
fiber-rich diet

Christensen et. al.
(2019)
[138]

Whole-grain (33 g/d
fiber) or refined-wheat
diet (23 g/d fiber)

6 weeks
Post hoc analysis of a
randomized parallel
dietary intervention

16S rRNA sequencing
and SCFAs in fecal
samples

Healthy, overweight
adults
(n = 46)

P-type lost more weight on the whole-grain
diet (p = 0.013)

Chung et al. (2020)
[147]

Habitual diet with AXOS
or maltodextrin
supplement (15 g/d)

Each for
10 days

Controlled cross-over
dietary intervention

16S rRNA sequencing
and SCFAs in fecal
samples

Volunteers ≥ 60 years
with normal or slightly
obese BMI (n = 21)

Inverse proportional P/B abundance
(p = 0.001)
P-type: higher mean fiber intake (p = 0.03)
No differences in calprotectin
concentrations, glucose, cholesterol, or
triglyceride levels between enterotypes

Christensen et al.
(2022)
[136]

Whole-grain or
refined-wheat diet 6–8 weeks

Post hoc analysis of two
randomized controlled
dietary interventions

One by 16S rRNA
sequencing, one by
shotgun metagenomics

Healthy, overweight
adults
(n = 70)

Baseline Prevotella abundance predicts body
fat change in
low-amylase-gene-copy-number group
(p < 0.05)

Hur et al. (2022)
[141]

Korean traditional
balanced diet and
Western-style diet

Each for
1 month

Randomized cross-over
study

16S rRNA sequencing
and untargeted and
targeted metabolomic
analysis of serum
samples

Healthy, obese women
(n = 52)

P-type: Western diet associated with higher
muscle mass and L-homocysteine,
glutamate, and leucine concentrations,
traditional diet led to higher
hydroxybutyric acid (p < 0.05)
B-type: Western diet associated with higher
serum tryptophan and total cholesterol
concentrations, traditional diet was
positively associated with glutathione and
3-hydroxybutyric acid concentrations
(p < 0.05)
Traditional diet had greater efficacy in
P-type individuals

In this table, words in bold highlight studies that used a metabolomics approach.
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Overall, these studies indicate that there are already promising insights into per-
sonalized dietary recommendations based on the composition of the gut microbiome. It
seems that P-type individuals’ metabolism may respond more favorably to a fiber-rich diet.
Nonetheless, only a few studies support this hypothesis using a metabolomics approach,
for example, by measuring SCFAs in various tissues. These include compounds such as
TMAO and the metabolic byproducts of amino acid and fatty acid fermentation, and the
metabolism of secondary bile acids. Identifying metabolites using metabolomics methods
also has its challenges, as previously discussed. Categorizing individuals into enterotypes
is a noteworthy simplification of the intricate microbiome complexity, presenting unique
technical challenges. In addition to the genera Prevotella and Bacteroides, the functions
and distribution of other bacterial species, along with factors such as transit time and
microbial diversity, are pivotal in influencing both health outcomes and the production of
microbial metabolites. Furthermore, it is essential to acknowledge that classifying based on
a particular genus may not encompass the functions of various strains and clades within
bacterial genera, which can exhibit substantial variations and remain unaccounted for in
the context of enterotype classification [124]. Creating personalized diet recommendations
informed by the microbiome presents a formidable challenge. Human studies encounter
complexities stemming from substantial individual variations, the constrained ability to
manipulate microbiome composition, and the practical difficulties associated with adhering
to experimental dietary regimens. To address these challenges, studies on human nutrition
require large participant cohorts, and some metabolic changes necessitate long-duration
experiments, which can often be unrealistic. Researchers are addressing this intricate
challenge by increasingly relying on AI and machine learning tools. These advanced tools
scrutinize data concerning food composition, the microbiome, and human physiological
responses, employing this information to forecast the collective impact of these elements
on particular outcomes. These models excel at predictions but often struggle to fully elu-
cidate why certain substances yield varied responses. However, when researchers train
these algorithms with suitable data, the algorithms can identify essential factors and make
accurate predictions about metabolic responses.

5. Conclusions

In conclusion, these studies provide valuable insights into the potential for personal-
ized dietary recommendations based on enterotypes and metabolomics methods. Despite
the challenges associated with comprehending the intricacies of the microbiome and its
multifaceted functions, the application of metabolomics offers a promising avenue for
deciphering these complexities. These findings pave the way for more tailored dietary
guidance, offering the potential for improved metabolic responses based on an individual’s
unique microbiome composition.
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