
Resource-aware Security Configuration for Constrained IoT
Devices

Anonymous Author(s)

ABSTRACT

The Internet of Things (IoT) is the enabler for new innova-
tions in several domains. It allows the connection of digital
services with entities in the physical world. These entities
are devices of different sizes ranging from large machinery to
tiny sensors. In the latter case, devices are typically charac-
terized by limited resources in terms of computational power,
available memory and sometimes limited power supply. As a
consequence, the use of security algorithms requires of them
to work within the limited resources. This means to find
a suitable implementation and configuration for a security
algorithm, that performs properly on the device, which may
become a challenging task. On the other side, there is the
desire to protect valuable assets as strong as possible. Usually,
security goals are recorded in security policies, but they do
not consider resource availability on the involved device and
its power consumption while executing security algorithms.

This paper presents an IoT security configuration tool that
helps the designer of an IoT environment to experiment with
the trade-offs between maximizing security and extending
the lifetime of a resource constrained IoT device. The tool
is controlled with high-level description of security goals in
the form of policies. It allows the designer to validate various
(security) configurations for a single IoT device up to a large
sensor network.

ACM Reference Format:
Anonymous Author(s). 2023. Resource-aware Security Configu-

ration for Constrained IoT Devices. In Proceedings of Confer-
ence on Modeling, Analysis and Simulation of Wireless and Mo-
bile Systems (MSWIM). ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The Internet of Things (IoT) allows to connect a variety of
devices to each other and to the Internet. Most times small
sensors provide information about the physical world. These
devices are typically characterized by limited resources in
terms of computational power, available memory and power

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

MSWIM, Oct. - Nov. 23, Montreal, Canada

© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

supply. In this context, security aspects play an important
role with the integration of IoT devices into new or existing
environments. However, designing and developing a tailored
solution, utilizing the available resources in an optimal way,
is difficult and requires expert knowledge.

When designing an IoT environment, the assets and secu-
rity goals are identified together with the stakeholder(s) and
recorded within Security Policies (SPs). They describe who
and under which circumstances an asset may be accessed
or modified. Often, the description is in an abstract form
and specific security mechanisms are not chosen until the
implementation of the policy. In general, selecting a security
implementation poses no problem, since modern computer
systems have sufficient resources.However, the situation is
different in the IoT domain, where constrained devices are
deployed in remote places and are supposed to operate unat-
tended for a long time.

For the protection of digital assets, a wide variety of secu-
rity mechanisms and implementations is available. However,
the use of complex security mechanisms can have a negative
effect on the lifetime of an IoT device. For a system designer
it is hard assess which mechanism can be used within the use
case resources and how much it will influence the operational
lifetime. This work describes a system that assists a devel-
oper in the design of an IoT ecosystem with respect to the
selection and parametrization of security implementations
for resource-constrained IoT devices to a) fulfill the security
requirements stated in a SP; b) remain within available re-
sources of the IoT device and the use case and c) identify
the maximum security measures that can be applied for a
given use case.

Here, a setup that allows the security mechanism to be
executed on the IoT device itself is preferred. This way, true
End-to-End (E2E) security can be realized, eliminating the
requirement to trust the edge nodes, which may be oper-
ated by third parties. However, the option to outsource the
execution of a security mechanisms to a ”less” constrained
edge/fog node should not be excluded, e.g. for cases where the
protection of an asset on the IoT device is impossible within
the available resources. Following the recommendations, the
system designer can be sure to comply with the minimum
technical security requirements stated in SP. The SPs shall
be used to identify individual information flows, where an
asset (in this case the data collected by the IoT device) is
shared and hence must be protected.

The main contributions of this paper are:

∙ We describe desirable features for an IoT environment
designing tool that combines resource availability with
data security.

∙ We present available design and planning tools that
can be used to plan an IoT ecosystem and compare

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MSWIM, Oct. - Nov. 23, Montreal, Canada Anon.

them with regards to the aforementioned features. This
includes research activities that try to mitigate resource
limitations on IoT devices by distributing workload
among different nodes within a network.

∙ We extend a Security Policy Language to capture avail-
able resource and define a number of transformation
rules to convert the policies into a resource-aware In-
formation Exchange Model.

∙ We extended a ”cycle-true” emulator for MCUs and
show how it can be used to estimate to resource con-
sumption of an IoT application without the need of an
actual deployment.

The rest of this paper is organized as follows: Section
2 lists a series of desired features we believe can help a
designer of an IoT ecosystem to implement security measures
in a more efficient way. Section 3 presents different types of
solutions that have been developed in the past to address the
issue of limited resources in the IoT or sensor networks in
general. Section 4 describes a resource-aware model to capture
individual information flows within a network followed by
a description of the system design in Section 5. In Section
6, we evaluate the general concept in a small scale example,
before concluding the paper in Section 7.

2 FEATURES & DESIGN GOALS

The design tool, as proposed in this paper, shall be used to
plan a secure IoT environment. Data that is shared within
this environment is supposed to be protected throughout the
use case, i.e. not only during transport, but at application
layer. The user shall be able to compare the impacts of
different configurations in terms of resource consumption and
IoT device lifetime. Following a list of features and design
goals for the envisioned tool.

F-1 Usable by non-security Experts: The envisioned
solution is meant to allow non-security experts to state high-
level security requirements for the information that is col-
lected by IoT sensors.
F-2 Bridging Semantic Gap between high-level de-
scription to low-level configuration: There is a semantic
gap between the security requirements by stakeholders from
a high-level to specific implementations and configurations
at a low-level. The high-level SP should be defined formally
and processable in a (semi-) automated way.
F-3 Individual Information Flows to entire Sensor
Networks: Handling the constraints of a specific IoT device
requires to identify all information flows it is involved in.
(Mostly, where is acts as source or destination.) This means
it must be possible to extract individual information flows
out of the SPs.
F-4 Specify Use Case Resources: The problem with con-
strained resources in IoT environments is rooted in con-
strained resources in a use case in general. If a sensor had
unlimited time to provide its readings, even the slowest pro-
cessor would have sufficient computational power. However,
in real-world scenarios resources of a use case are limited
and must be respected in the system design phase. As these

resources depend on the use case, they must be determined
in accordance with the stakeholder, i.e. within the high-level
SP.
F-5 Issue-Specific Level: When concerned with limited
use case resources that are available to individual IoT devices
providing specific assets, the SP must describe address a
specific use case. Alternatively, following the categorization
defined by the National Institute of Standards and Tech-
nology (NIST) in [15], the policy must be issue-specific

specification level. Having SPs specifying concrete use cases
is necessary to specify resource availability for individual
information flows and involved devices.
F-6 Emulation-based Resource Consumption Estima-
tion: The number of candidates for a suitable configuration
on the IoT device grows exponentially with the number of
algorithms/implementations (including different libraries for
the same algorithm), the number of available parameters
and their possible values and the number of available Micro-
Controller Units (MCUs). Executing possible candidates in
an emulation environment allows to consider new combina-
tions for which no consumption data was gathered yet.
F-7 Maximizing Security within available Resources:
The system shall find a set of security configurations that are
operating within the limited resources of the use case. These
configurations will describe different algorithms and their
parametrization. As a consequence, the achievable security
level will also differ and hence a ranking mechanism must
allow the user to judge about the tradeoff between security
level and resource consumption.
F-8 Support for Algorithms with Task-Offloading: Al-
though E2E encryption is the preferred way to protect an
asset, we acknowledge that there might be cases, where the
execution of security algorithms must be shifted to an exter-
nal entity with less constrained resources. The system shall
support the offloading of (parts of) a security algorithm for
the benefit of saving resources or extending the lifetime of
an IoT device.

3 RELATED WORK

In this Section, we present related works that address the
issue of resource-constrained IoT devices for a secure data
provisioning. We focus on tools that allow to design of sensor
networks with regards to the challenges using IoT devices,
e.g. limited energy source and computational power.

In [17], Ramadan et al. present SensDep, a design tool
to optimize cost and coverage in sensor networks. The tool
divides an area into zones and tries to place active sensors
into each zone, where each sensor has different attributes
such as reliability and lifetime (battery depletion). However,
in their performance evaluation, characteristics such as the
battery lifespan are generated randomly. Furthermore, the
influence of different algorithms executed on the sensor is
not considered. Vibha Prasad et al. developed ANDES, an
”ANalysis-based DEsign tool for wireless Sensor networks”
[16]. The goal of the tool is to improve the predictability of
the performance of a Wireless Sensor Network (WSN) design

Resource-aware Security Configuration for Constrained IoT Devices MSWIM, Oct. - Nov. 23, Montreal, Canada

and reduce the costs for testing. The focus in ANDES is to ex-
periment with different communication scheduling algorithms.
The tool can be seen as an extension to the Architecture Anal-
ysis and Design Language (AADL), meaning the designer of
the system must be able the write AADL documents, which
is not trivial. Wireless Sensor Network Deployment Design
(WSN-DD) by David Santiago [9] is a tool to capture high-level
requirements of a WSN. The wizard-like user interface was
developed as browser-based map application, where sensors
and obstacles can be placed. The tool allows to specify sensor
data streams. Requirements are expressed as Quality of Ser-
vice (QoS) expectations, whose feasibility is evaluated. The
expected lifetime can be estimated analytically, based on a
cost model. However, there is no relation to the protection of
the data provided by the WSN. Tinker, by Jeremy Elson et
al. [12], is a collection of software modules for the processing
of data in data streams. Tinker provides features to analyze
the effects of data loss compared to a complete data set. With
this, unreliable IoT sensor nodes and network connections,
typical in WSNs, are acknowledged. The user-groups tar-
geted by Tinker are developers of IoT applications. However,
Tinker itself is not an in-depended application, but must be
integrated into one. Que (by Chu et al. [10]) implements Tin-
ker and is a framework to simulate/emulate sensor networks.
Que addresses’ the topics scalability, realistic data, interop-
erability with other components, and longevity. The last one
is dealt by minimizing the sampling rate and duty-cycle of
a sensor node. The paper also touches the topic of energy
reduction, but only by performing data reduction on appli-
cation level, resulting in fewer/shorter radio transmission of
the IoT sensors. Aazam et al. [3, 4, 2] developed a model to
allocate resources of a fog node for customers, based on their
previous behavior. They named their solution MEdia FOg
Resource Estimation (MeFoRE). Their assumption is, that an
end device that interrupted the usage of a fog node in the
past is likely to do so in the future. As these users seem
not interested in QoS, less fog resources are allocated. Salah
ud din et al. [11] propose a protocol named Power-Efficient
Wireless Multimedia of Things (PE-WMoT). The main idea
behind PE-WMoT is to reduce unnecessary transmissions
of sensor nodes in a (sub-)cluster that observe the identical
area (field of view).

The topic of designing a WSN or an IoT ecosystem is often
addressed by Network Simulators (NetSims). NetSims can
be used for implementing and investigating the performance
of a system under varying parameters and configurations by
considering multiple ”what-if” cases. The focus of network
simulators is analyzing communication protocols in different
scenarios. Prominent network simulators include Network
Simulator 2 and 3 (NS-2, NS-3), TOSSIM, OMNeT++, or
MatLab/SimuLink. The interested reader is referred to [18].
The support to simulate the resource consumption is inte-
grated in only few simulators out-of-box, but as simulators
are generally extendable, own energy models could be added
in principle. However, security is usually handled at network
layer via Transport Layer Security (TLS), limiting the range
of available security algorithms and configurations.

The EU projects SECURED [21] and ANASTACIA [22]
investigated ways to define security requirements for Soft-
ware Defined Networks (SDN). For this, the project de-
veloped the policy language High-level Security Policy

Language (HSPL) to control the use of security functions
on network fog/edge devices. With it, general protection
requirements are expressed by typically non-technical end-
users and is based on a set of predefined vocabulary. The
syntax follows a subject - predicate/action - object approach,
followed by the possibilities to add further conditions in the
form of key-value pairs. The subject specifies the user access-
ing/performing an operation on the object. The action is the
operation to perform. The three components (subject, action,
object) need to be predefined, depending on the use case as
well as their possible combinations. HSPL allows to gather
the security policies with the stakeholder on a high level and
in a formal way. These policies are later transformed into
configuration files for security software running on the fog
device, for example generating nftables1 firewall rules.

In Table 1, a comparison of the tools for the design of
resource-constrained networks and IoT environments, and
their support of the features listed in Section 2 is given. The
semantic gap between security requirements and low-level
configuration (F-2) is mainly addressed by HSPL and to
some degree by WSN-DD. Some approaches focus on the
allocation of resources in fog nodes only F-8, but not IoT
end device (F-3). The offloading of complex tasks also serves
the purpose of dealing with limited resources and sounds rea-
sonable. However, it requires to trust these (third party) fog
nodes. In case when the data provided by the IoT devices is
confidential, using offloading techniques becomes difficult or
impractical. SensDep and ANDES address technical experts
F-1 and focus on the positioning of nodes within an network.
Tinker and Que as well are not meant for the use by stake-
holders but rather developers F-5. Same is true for prominent
network simulators like NS-3 or OMNeT++. Given a suitable
simulation model, they are able to predict resource consump-
tion F-6, but are difficult to use. The policy language HSPL,
provided by the SECURED project, was the most promising
solution, but like MoFeRE and PE-WMoT concentrated on
resources within a fog/edge node. None of the tools relates
security algorithms with their resource consumption (F-4).
The last column represents the proposed system, which is
here named eHSPL as it extends the HSPL language.

4 INFORMATION EXCHANGE
MODEL

This section specifies the Information Exchange Model (IEM)
developed to describe the secure exchange of information
between two or more parties, where at least one of them is
considered to be constraint in terms of resources. The model
includes at least two parties that are involved in the transfer
of the information, mainly those responsible for the execution
of security mechanisms. There is at least one security goal
that needs to be applied in the protection of the information.

1https://netfilter.org/

https://netfilter.org/

MSWIM, Oct. - Nov. 23, Montreal, Canada Anon.

Table 1: IoT Design Tools Comparison Overview

Solution →
Property ↓ SensDep ANDES WSN-DD Tinker Que MeFoRE PE-WMoT NetSim HSPL eHSPL

F-2 × × × × × ×
F-3 ×
F-1 × × × × × × ×
F-4 ⊗ × × ×
F-5

F-6 × × × × × ×
F-7 ? × b × × × × ×
F-8 × ×

- supported; × - not supported; ⊗ - not supported, but planned; b- only reliability; ? - unknown

The model is able to specify the security requirements on a
high- and a low-level. The model is divided into four concepts,
which are described in the following subsections.

4.1 Information Flow ℱ
An Information Flow ℱ describes the exchange of an in-
formation in form of a Message 𝑀 between at least two
Participants, a data Provider 𝑃𝑃 and a Receiver 𝑃𝑅. In
between other Participants may assist the transport by for-
warding 𝑀 . Participants are connected to one another by
CommunicationLinks. 𝑀 contains at least one (digital) Asset
𝐴, which must be protected and which is of interest by an
attacker. The distinction between an Asset and a Message is
done, since the size of a 𝑀 depends on the communication
protocol, whereas the size of an 𝐴 is determined by the size
of the digital information, e.g. a sensor measurement. Within
the IEM, 𝐴 is a information that is gathered by/provided to
a resource-constraint IoT device.

In a flow ℱ , 𝑀 may pass additional entities, which can
be classified as active and passive. Passive participants will
be called Gateway and active ones Proxy. Gateways forward
a message to the next participant, while Proxies execute
security mechanisms. For example, a Proxy can perform al-
gorithms to (re-)encrypt 𝑀 . The name Proxy was chosen to
relate to the Proxy Re-Encryption (PRE) [19] schemes. A
CommunicationLink is used by two participants to transfer
𝑀 . They may support different communication technologies,
which consume different amount of resources. The Infor-
mation Flow concept is depicted in Figure 1 at the bottom
left.

4.2 Devices and Resources concept

Each Participant involved in a flow ℱ uses a form of Device
to receive, transmit or process 𝑀 . Each Device has a set of
Resources and Capabilities, that can be used in ℱ . In the
context of message exchange in an Information Flow using
resource-constrained IoT devices the most relevant Resources
are: Computational Power (cycles per second, number of
cores), Memory (Flash, RAM), Communication Technology
(throughput, duty cycles), Energy Consumption (amount of
current drawn in different power modes of the MCU, including

periphery such as the sensor itself and communication device)
and financial cost. In addition to the resources provided by
the Device, the use-case itself provides Resources. Typically
these are described in the form of use case requirements
and include: Time (available time to transfer 𝑀 from 𝑃𝑃 to
𝑃𝑅), Energy Source (capacity of a battery if applicable) and
Budget. The concept is depicted in the top left corner in
Figure 1.

4.3 Performance concept

A flow ℱ possesses a series of Performance Metric (𝑃𝑀),
indicating the ability of a Device to perform a Security Imple-
mentation (𝑆𝐼) (see next concept) and the resulting resource
consumption. 𝑃𝑀 s need to be determined by either analyz-
ing the algorithm of the 𝑆𝐼 or experimentally, e.g. through
emulation. There are two types of 𝑃𝑀 : a 𝑃𝑀 either describes
the amount of resources that are going to be consumed when
executing the 𝑆𝐼 , if the resource is consumable in nature. As
an example, the load level of a battery is reduced a little
over time as a consequence of executing a 𝑆𝐼 . Secondly, a
𝑃𝑀 can describe the amount of assets that can be processed
in a certain amount of time, e.g. how many bytes of data can
be encrypted/decrypted per second.

In addition, we define Performance Indicator (𝑃𝐼) as a
combination of all relevant 𝑃𝑀 that influence a 𝑆𝐼 . The 𝑃𝑀 s
can be weighted to reflect use case resources that describe a
hard threshold, e.g. real-time requirements. The intention is
to be able to compare different implementations, where one
might require more time than an other, but allocating less
memory at the same time. The concept is depicted in the
top right corner in Figure 1.

4.4 Security Specification and
Configuration concept

The goal of the IEM is to describe and process and transform
high-level SPs, which were developed together with a stake-
holder, into concrete security configuration recommendations.
For this, the level of abstraction must be refined. This concept
defines the following abstraction levels: Security Service (𝑆𝑆)
(e.g. confidential, integrity), Security Mechanism (𝑆𝑀) (e.g.

Resource-aware Security Configuration for Constrained IoT Devices MSWIM, Oct. - Nov. 23, Montreal, Canada

encryption/steganography or digital signatures/Message Au-
thentication Code (MAC)), Security Implementation (𝑆𝐼)
(e.g. AES, Twofish, Blowfish, RSA), and Security Configura-
tion (𝑆𝐶) (𝑆𝐼s and their parametrization that usable in the
scenario).

5 SYSTEM DESIGN

This section describes the design of the envisioned IoT envi-
ronment security design tool. First, an extension to the HSPL
policy language is proposed to allow for the annotation of
resources and the identification of information flows. Follow-
ing are transformation rules to interpret these HSPL policies.
Thirdly, modifications on an emulator for ATMEL MCUs
have been made to allow for a scenario specific estimation
of resource consumption. This emulator has been chosen be-
cause its ability to emulate the well known, cheap and easily
available Arduino platform. Furthermore, the emulator has
an energy monitoring subsystem implemented already, which
forms the basis of the resource consumption predictions.

5.1 eHSPL- Extended High-level Security
Policy Language

In order to guide the resource estimation from a high-level
Security Policy starting point, ANASTACIA’s HSPL was
extended. HSPL was chosen as it is an easy to understand
SP that is defined formally and thus can be processed in an
automatic way. We refer to the extended version of HSPL as
eHSPL.

Although not explicitly stated by the ANASTACIA project
[5, 1], the documentation for HSPL-fields indicates that they
only allow to specify characteristics and limitations for HSPL-
objects. To be able to annotate the HSPL policies with ad-
ditional information required in the IEM, we introduce a
set of specific HSPL-fields that affect the HSPL-subject as
well. In that respect, we extend the original concept with
the following HSPL-fields to annotate HSPL-subjects with
further properties, namely:

∙ within: With this field real-time requirements in the
provision of data can be specified. This field describes
the maximum transfer time of the message 𝑀 from
provider 𝑃𝑃 to receiver 𝑃𝑅.

∙ has energy source: This field is important for IoT
devices with a limited energy source, i.e. that are bat-
tery powered. Its value describes the amount of energy
stored within the battery in mAh (milli-amp-hour).

∙ runs autonomous for: With this field, the mainte-
nance interval for an IoT device can be specified. It is
closely related to the field has energy source and is
used to define an upper threshold for the consumption
of the energy resource.

∙ with budget: In cases where the device type is not
known upfront, this field can be used to specify a
maximum budget that can be spent. The system then
can iterate through different candidates to search for
the most suitable one.

Table 2: Participant identification based on HSPL
Actions

Type →
Action ↓ Provider Gateway Receiver Proxy Asset

provides - - - -

publish - - - -

protects* - - -

(not)authorised
to access

- - - ()

receives - - - -

subscribes - - - -

requests - - - -

forwards - - - -

converts - - - ()

∙ every: This field is used to specify the update fre-
quency of the IoT device in which new data is provided.
The field has to be some sort of time value, such as 1
second(s). It is expected that the value of this field is
smaller than the one in the field within.

∙ has size: With this field, the size of an asset (i.e. the
object in the eHSPL policy) can be specified.

∙ is a: This field is used to specify a device for the
corresponding HSPL-subject. This might be relevant
if a certain microcontroller must be used due to other
scenario requirements.

Next it is necessary to identify the roles of the participants
as well as an asset from the eHSPL policies. In order to do so,
new eHSPL-actions were defined together with a mapping of
those actions to the possible roles in an Information Flow,
as shown in Table 2. For most eHSPL-actions the mapping
should be self-explanatory as it states what the role does. A
special eHSPL-action is the protects action as it is used to
a) identify an asset and b) to list the security service 𝑆𝑆 for
this asset. Using this action the HSPL syntax is exceptionally:
subject protects <list of security services> asset.

5.2 eHSPL Policy to Information Flow
Transformation

For the previously presented concept, we implemented a
transformation tool, applying the transformation rules from
the eHSPL into an instance of the IEM. In a first step the
eHSPL policies are ordered in such a way that those with
a protect action come first. Each policy with this action is
considered to declare an new instance of an Information Flow
ℱ . Iterating through the other policies new restrictions are
added to a flow. Which flow is identified by the eHSPL object
(i.e. the flows’ Asset). For example, consider the following
two policies:

∙ Sensor A protects Confidentiality of temperature read-
ing.

∙ User B is authorized to access temperature reading.

MSWIM, Oct. - Nov. 23, Montreal, Canada Anon.

Both policies belong to the same Information Flow as both
specify restrictions for the same asset temperature reading.
Sensor A has the role of provider with the action protects
Confidentiality and User B the role of a receiver with the
action authorized to access. Note how the Sensors action is
also used to specify the 𝑆𝑆 Confidentiality.

After all eHSPL policies have been processed, in a second
stage the Information Flows are tried to be merged. That
is the case when multiple assets have the identical provider,
receiver and security service(s) specified. This is important in
terms of resource consumption as the assets can be transferred
in a single message. For example, in our evaluation scenario,
the provider provides a temperature and humidity reading
from a single sensor.

A manual step in the transformation process remains the
selection of a security mechanism 𝑆𝑀 for the 𝑆𝑆 specified in
the eHSPL policies (in the above example Confidentiality).
Although only the security mechanism ’Encryption’ may be
realistic for the 𝑆𝑆 Confidentiality, with other 𝑆𝑆s, multiple
𝑆𝑀 options might be applicable.

In a next step, another component named ”Firmware Com-
poser” gets as input information about a single flow and gen-
erates a firmware image for a specific MCU, where a specific
security implementation 𝑆𝐼 is used on a data blob of the
same size as the asset. The user of the transformation tool
can select which 𝑆𝐼 to try. The firmware generation uses a
template engine with 𝑆𝐼 specific templates for each opera-
tion of a participant. The firmware code is compiled in the
PlatformIO development environment, providing estimations
about the memory consumption. The firmware is then passed
to an emulation environment to analyze the energy consump-
tion (i.e. processing time). The emulation environment is
described in more detail in the next section.

5.3 AVRORA: Atmel MCU Emulator
Extensions

To determine the resource consumption of an security im-
plementation within an emulation requires a ”cycle-true”
emulator. That means, each instruction in the firmware is
emulated in the same amount of cycles as it would require
when the firmware is executed on the real MCU. This does
not mean that the emulation must be performed in the same
amount of time as the execution on real hardware would
require, only that the execution is done in the same amount
of cycles. Often, emulation environments such as Apple’s
Rosetta or QEMU translate compiled code for one proces-
sor architecture to another processor architecture, which
makes it impossible to determine the execution time (and
thus resource consumption) reliably [8]. We decided to use
the AVRORA emulator [7] developed at the University of
California, Los Angeles (UCLA), which supports AVR MCU
used by the popular and widely available Arduino Leonardo
platform (equipped with an AVR ATMega32u4 MCU[13]).
This allowed a direct comparison between emulation and
the execution on real hardware. Furthermore, support for
the Arduino Uno platform (AVR ATMega328P MCU) was
added.

A benefit of the AVRORA emulator is its ability to track
the energy consumption during emulation. For this, the cur-
rent drawn by the MCU in each mode (active and sleep
modes) were measured and implemented into AVRORA’s
energy model. The energy model is implemented as a Finite
State Machine (FSM), where each state represents a mode
of the MCU. The FSM keeps track for how many cycles it
remained in a specific state. By knowing the MCU frequency,
the time spent in each mode and in combination with the
operating voltage, the energy consumption can be calculated.
The energy models for the Arduino Leonardo and Uno were
also added.

In the evaluation scenario (see Section 6) the MCU has to
perform a task in a specified interval and in between is allowed
to change into a sleep mode. To realize this the Watchdog
Timer (WDT) is utilized, however, switching back into the
active state triggered by the WDT was not implemented in
AVRORA. Thus, the emulator was extended by reading the
watchdog control register Watchdog Timer Control Register
(WDTCSR) ([6] p. 60), which holds the information about
how long the MCU is supposed to sleep. With this time and
the frequency of the MCU, the number of cycles in sleep
mode is calculated and the internal clock is fast forwarded by
this number of cycles before switching back into the active
mode. Before switching back, the FSM stores the number
of cycles that should have been spent in this state for the
purpose of energy calculation. This way, the sleep intervals
can be emulated without actually spending a lot of emulation
time in one of the sleep states.

6 EVALUATION

In this section we provide an evaluation about the ability of
the system to predict the runtime of an hypothetical scenario.
In the scenario, a temperature and humidity sensor (a DHT22
2) is used to provide new sensor reading every twenty seconds
for a period of 24 hours. In between, the MCU goes into sleep
mode (”PWR DOWN”). As security goal, the confidentiality
of the sensor readings must be protected by encrypting the
data before transmission. The readings are embedded into
a JavaScript Object Notation (JSON) message (40 bytes in
size), encrypted and transferred via Universal Asynchronous
Receiver Transmitter (UART) interface. The sensor is con-
nected to an Arduino Leonardo hardware platform with an
ATMega32u4 MCU.

To protect the confidentiality the encryption algorithm
Advanced Encryption Standard (AES) is used in Cipher Block
Chaining (CBC), Electronic Code Book (ECB) and Counter
Mode (CTR) mode. As implementations serve the AESLib
library [14] as well as the TinyAES [20] implementation,
implementing the 3 selected encryption modes. The former
is executed with a key length of 128 bit and only CBC (the
only supported key length), while the later is executed with
the key lengths 128 bit and 256 bit.

The use case was described in two very simple eHSPL
security policies describing a sensor as data provider using

2https://www.adafruit.com/product/385

https://www.adafruit.com/product/385

Resource-aware Security Configuration for Constrained IoT Devices MSWIM, Oct. - Nov. 23, Montreal, Canada

Figure 1: Overview of the Information Exchange Model

the eHSPL action ’protects’ with ’Confidentiality’ as security
service. The timing constraint of 20 seconds between each
measurement and the size of the asset were described using
the according eHSPL fields ’has size’ and ’every’. Further-
more, a PC as receiver with no further constraints regarding
its resources was described in a seconds eHSPL policy. During
the processing of the eHSPL policies both policies have been
merged, since both address the same asset (sensor readings).
Next, a firmware was generated, utilizing the various security
implementations on a dummy asset of the same size. As the
runtime of a security implementation is independent of the
cleartext message except the size, the MCU will spend the
same amount of time for the encryption. Then, the firmware
was compiled and executed with the modified AVRORA
emulator (section 5.3) for a emulated time of 24 hours.

In this fictive scenario, the measurement frequency was
deliberately high to be able to see the influence on energy
consumption in such a small time frame. As power supply
served two lithium-ion batteries connected in series with a
capacity of 700 mAh. When fully charged, the batteries have
a voltage of about 3.7 V each. Table 3 shows the drop of
the voltage of the two batteries after 24 hours as well as the
average voltage. Furthermore, the required charge 𝐶 to re-fill
both batteries (Batt1 and Batt2) is shown. The charge 𝐶 was
measured using the SKYRC iMAX B6 mini battery charger.
With that, the energy 𝐸 were calculated as follows:

𝐸 = (𝐶𝐵𝑎𝑡𝑡1 + 𝐶𝐵𝑎𝑡𝑡2)/𝑡𝑒 * 𝑈𝑎𝑣𝑔 * 𝑡𝑠 (1)

with emulation time 𝑡𝑒 equal to 24 hours, i.e. the runtime
of the experiment, and the simulation time 𝑡𝑠 (for convenience
as well 24 hours). The results are compared with the predicted
energy consumption by the emulator in the last column. The
predictions are close to the measurements, but marginally

Table 4: Predicted Energy consumption in Joule for
different configurations and roles.

Role Conf. Leo Uno

Provider TAES 128 ECB 3251 8496

Provider TAES 128 CBC 3667 8669

Provider TAES 128 CTR 3745 8701

Provider AESL 128 CBC 4149 8868

Receiver TAES 128 ECB 4802 9140

Receiver TAES 128 CBC 5659 9495

Receiver TAES 128 CTR 4899 9180

Receiver AESL 128 CBC 5233 9318

differ between the different key lengths. As shown in the last
column, the deviation is about 1% between measurement and
emulation for TinyAES and 2% for AESLib. A reason for the
deviation between emulation and measurement could be, that
the emulator assumes a constant voltage by the power supply.
The voltage of lithium-ion batteries however decreases as the
battery is discharged.

Table 4 shows the influence of different security configura-
tions and on different hardware platforms. In this imaginary
scenario, a sensor provides a new reading every 10 seconds
for a day. Again the two implementations TinyAES (TAES)
and AESLib (AESL) are used with fixed key size of 128
bit and modes. As hardware platform the Arduino Uno R3
(ATMega329P MCU) and Leonardo (ATMega32u4 MCU)
were emulated. It shows that encrypting with AESLib con-
sumes most energy. Decrypting requires more energy in all
configuration. Furthermore, CBC with TinyAES requires
most.

MSWIM, Oct. - Nov. 23, Montreal, Canada Anon.

Table 3: Experiment

Configuration Voltage U [V] Charge C [mAh] Calculation Emulation
Algo Key Len Mode max min avg Batt1 Batt2 Σ I [mA] P [mW] E [mJ] E [mJ] 𝛿

AESLib 128 CBC 7.97 7.48 7.7278 161 162 323 13.458 104.00331 8,985,885.84 9,127,694.651 2%

TinyAES 128 CBC 8.1 7.49 7.73388 159 162 321 13.375 103.44065 8,937,271.7 8,993,735.439 1%

TinyAES 192 CBC 8.01 7.48 7.7306 162 166 328 13.666 105.65153 9,128,292.48 8,993,735.44 -1%

TinyAES 256 CBC 8.02 7.49 7.7392 161 159 320 13.333 103.18933 8,915,558.4 8,993,735.442 1%

7 CONCLUSION

To extend the lifetime of IoT devices requires the efficient
usage of the limited resources on all levels. In this paper, we
addressed the issue of resource-constrained IoT devices by
selecting and configuring suitable security algorithms in an
IoT environment. Our proposed solution starts by capturing
the security goals within an extended version of the HSPL
policy language. The policies are transformed into an instance
of the presented IEM afterwards. With this, different security
implementations and configurations are tested by generating
a firmware image, which is later executed within a cycle-true
emulator to estimate the later resource consumption. For
an IoT sensor gathering data in a cyclic way, this allows to
predict the runtime of an iteration and with that the energy
consumption over a longer period of time.

In the future, we plan to scale up the prediction of the
resource consumption from single Information Flows to entire
sensor networks. Here, the predictions about the resource-
consumption from single Information Flows shall be used as
input for simulation models of the network. This will allow
to investigate the workload of entities in a network that must
handle multiple data streams, i.e. the participants Gateway
and Proxy, and in which cases they become a bottleneck.

REFERENCES
[1] AANASTACIA Project - GitLab repsitory. GitLab. url: https:

//gitlab.com/anastacia-project (visited on 10/08/2021).
[2] Mohammad Aazam and Khaled A. Harras. “Mapping QoE with

Resource Estimation in IoT”. In: 2019 IEEE 5th World Forum
on Internet of Things (WF-IoT). 2019 IEEE 5th World Forum
on Internet of Things (WF-IoT). Apr. 2019, pp. 464–467. doi:
10.1109/WF-IoT.2019.8767254.

[3] Mohammad Aazam, Chung-Horng Lung, and Ioannis Lam-
badaris. “MeFoRE: QoE based resource estimation at Fog to
enhance QoS in IoT”. In: 2016 23rd International Conference
on Telecommunications (ICT). 2016 23rd International Con-
ference on Telecommunications (ICT). May 2016, pp. 1–5. doi:
10.1109/ICT.2016.7500362.

[4] Mohammad Aazam et al. “IoT Resource Estimation Challenges
and Modeling in Fog”. In: Fog Computing in the Internet of
Things: Intelligence at the Edge. Ed. by Amir M. Rahmani
et al. Cham: Springer International Publishing, 2018, pp. 17–31.
isbn: 978-3-319-57639-8. doi: 10.1007/978- 3- 319- 57639- 8 2.
url: https://doi.org/10.1007/978-3-319-57639-8 2 (visited on
01/25/2023).

[5] ANASTACIA Project - Advanced Networked Agents for Secu-
rity and Trust Assessment in CPS / IOT Architectures. url:
http://www.anastacia-h2020.eu/ (visited on 10/08/2021).

[6] “ATmega16U4/32U4 Datasheet”. In: (), p. 438.
[7] Avrora - The AVR Simulation and Analysis Framework. url:

http://compilers.cs.ucla.edu/avrora/ (visited on 03/17/2022).
[8] Sorav Bansal and Alex Aiken. “Binary Translation Using Peep-

hole Superoptimizers.” In: OSDI. Vol. 8. 2008, pp. 177–192.

[9] David Santiago Bonilla Bonilla and Ixent Galpin. “WSN-DD: A
Wireless Sensor Network Deployment Design Tool”. In: Data
Analytics. Ed. by Andrea Cal̀ı et al. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2017, pp. 146–
152. isbn: 978-3-319-60795-5. doi: 10.1007/978-3-319-60795-
5 15.

[10] David Chu et al. “Que: A Sensor Network Rapid Prototyping
Tool with Application Experiences from a Data Center Deploy-
ment”. In: European Conference on Wireless Sensor Networks
(EWSN ’08). Jan. 1, 2008. url: https://www.microsoft.com/
en - us/ research/publication/que - a - sensor - network - rapid -
prototyping-tool-with-application-experiences- from-a-data-
center-deployment/ (visited on 03/06/2023).

[11] Muhammad Salah ud din et al. “Improving resource-constrained
IoT device lifetimes by mitigating redundant transmissions
across heterogeneous wireless multimedia of things”. In: Digital
Communications and Networks 8.5 (Oct. 1, 2022), pp. 778–790.
issn: 2352-8648. doi: 10.1016/j.dcan.2021.09.004. url: https://
www.sciencedirect.com/science/article/pii/S235286482100064X
(visited on 01/26/2023).

[12] J. Elson and A. Parker. “Tinker: a tool for designing data-centric
sensor networks”. In: 2006 5th International Conference on
Information Processing in Sensor Networks. 2006 5th Interna-
tional Conference on Information Processing in Sensor Networks.
Apr. 2006, pp. 350–357. doi: 10.1145/1127777.1127830.

[13] Pavlo Ilin. PIlin/avrora-arduino. url: https://github.com/
PIlin/avrora-arduino (visited on 01/18/2023).

[14] Davy Landman. Arduino AESLib. url: https://github.com/
DavyLandman/AESLib (visited on 01/17/2023).

[15] Michael Nieles, Kelley Dempsey, and Victoria Pillitteri. An
Introduction to Information Security. NIST Special Publica-
tion (SP) 800-12 Rev. 1. National Institute of Standards and
Technology, June 22, 2017. doi: 10.6028/NIST.SP.800-12r1.
url: https://csrc.nist.gov/publications/detail/sp/800-12/rev-
1/final (visited on 11/28/2022).

[16] Vibha Prasad et al. “ANDES: An ANalysis-Based DEsign Tool
for Wireless Sensor Networks”. In: 28th IEEE International
Real-Time Systems Symposium (RTSS 2007). 28th IEEE In-
ternational Real-Time Systems Symposium (RTSS 2007). ISSN:
1052-8725. Dec. 2007, pp. 203–213. doi: 10.1109/RTSS.2007.28.

[17] R. Ramadan, K. Abdelghany, and H. El-Rewini. “SensDep: a
design tool for the deployment of heterogeneous sensing devices”.
In: Second IEEE Workshop on Dependability and Security in
Sensor Networks and Systems. Second IEEE Workshop on
Dependability and Security in Sensor Networks and Systems.
Apr. 2006, 10 pp.–53. doi: 10.1109/DSSNS.2006.15.

[18] Richa Sharma, Vasudha Vashisht, and Umang Singh. “Modelling
and simulation frameworks for wireless sensor networks: a com-
parative study”. In: IET Wireless Sensor Systems 10.5 (2020),
pp. 181–197. issn: 2043-6394. doi: 10.1049/iet-wss.2020.0046.
url: https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-
wss.2020.0046 (visited on 02/28/2023).

[19] K. Suksomboon et al. “In-Device Proxy Re-encryption Service
for Information-Centric Networking Access Control”. In: 2018
IEEE 43rd Conference on Local Computer Networks (LCN).
2018, pp. 303–306. doi: 10.1109/LCN.2018.8638129.

[20] tiny-AES-c/aes.c at master · kokke/tiny-AES-c. GitHub. url:
https://github.com/kokke/tiny-AES-c (visited on 08/26/2022).

[21] Marco Vallini. FP7 project SECURED deliverable ”D4.1 Policy
specification”. 2015.

[22] Alejandro Molina Zarca et al. H2020 project ANASTACIA
deliverable ”D2.5 Policy-based Definition and Policy for Or-
chestration Final Report”. 2018.

https://gitlab.com/anastacia-project
https://gitlab.com/anastacia-project
http://dx.doi.org/10.1109/WF-IoT.2019.8767254
http://dx.doi.org/10.1109/ICT.2016.7500362
http://dx.doi.org/10.1007/978-3-319-57639-8_2
https://doi.org/10.1007/978-3-319-57639-8_2
http://www.anastacia-h2020.eu/
http://compilers.cs.ucla.edu/avrora/
http://dx.doi.org/10.1007/978-3-319-60795-5_15
http://dx.doi.org/10.1007/978-3-319-60795-5_15
https://www.microsoft.com/en-us/research/publication/que-a-sensor-network-rapid-prototyping-tool-with-application-experiences-from-a-data-center-deployment/
https://www.microsoft.com/en-us/research/publication/que-a-sensor-network-rapid-prototyping-tool-with-application-experiences-from-a-data-center-deployment/
https://www.microsoft.com/en-us/research/publication/que-a-sensor-network-rapid-prototyping-tool-with-application-experiences-from-a-data-center-deployment/
https://www.microsoft.com/en-us/research/publication/que-a-sensor-network-rapid-prototyping-tool-with-application-experiences-from-a-data-center-deployment/
http://dx.doi.org/10.1016/j.dcan.2021.09.004
https://www.sciencedirect.com/science/article/pii/S235286482100064X
https://www.sciencedirect.com/science/article/pii/S235286482100064X
http://dx.doi.org/10.1145/1127777.1127830
https://github.com/PIlin/avrora-arduino
https://github.com/PIlin/avrora-arduino
https://github.com/DavyLandman/AESLib
https://github.com/DavyLandman/AESLib
http://dx.doi.org/10.6028/NIST.SP.800-12r1
https://csrc.nist.gov/publications/detail/sp/800-12/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-12/rev-1/final
http://dx.doi.org/10.1109/RTSS.2007.28
http://dx.doi.org/10.1109/DSSNS.2006.15
http://dx.doi.org/10.1049/iet-wss.2020.0046
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-wss.2020.0046
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-wss.2020.0046
http://dx.doi.org/10.1109/LCN.2018.8638129
https://github.com/kokke/tiny-AES-c

	Abstract
	1 Introduction
	2 Features & Design Goals
	3 Related Work
	4 Information Exchange Model
	4.1 Information Flow F
	4.2 Devices and Resources concept
	4.3 Performance concept
	4.4 Security Specification and Configuration concept

	5 System Design
	5.1 eHSPL- Extended High-level Security Policy Language
	5.2 eHSPL Policy to Information Flow Transformation
	5.3 AVRORA: Atmel MCU Emulator Extensions

	6 Evaluation
	7 Conclusion

