

UNIVERSITY OF APPLIED SCIENCES

OUTLINE!

- 1. Osnabrück University of Applied Sciences
- 2. Bamboo as a Lightweight Construction Material
- 3. Connecting Bamboo Culms
- 4. Material Tests of Bamboo Culms and Connecting elements
- 5. Design and Building of the Bike
- 6. DIN-EN-14764 Tests
- 7. Conclusion

LOCATION AND DISTANCES
TO MAJOR CITIES (AS THE CROW FLIES):

- 57 km to Lingen, affiliated campus of OS UAS
- 70 km to the Dutch border
- 103 km to Bremen
- 115 km to Hanover
- 167 km to Cologne
- 193 km to Hamburg
- 365 km to Berlin
- 525 km to Munich

Osnabrück – University of Applied Sciences OUR FACULTIES

HOCHSCHULE OSNABRÜCK UNIVERSITY OF APPLIED SCIENCES

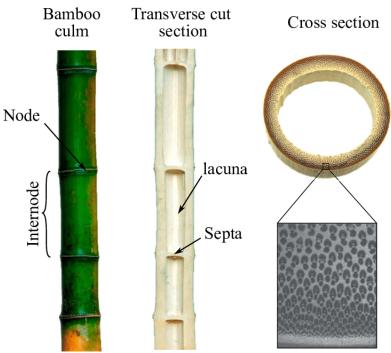
13,500 students in 4 faculties and one institute

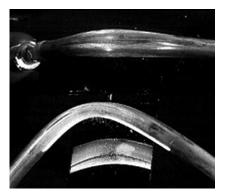
3,000 students in Engineering and Computer Sciences

ENGINEERING AND COMPUTER SCIENCE

AGRICULTURAL SCIENCES AND LANDSCAPE ARCHITECTURE

ENGINEERING AND COMPUTER SCIENCE


- 1. Strong practice-oriented study programs
- 2. Close research cooperation with regional and international companies
- 3. Long-standing cooperation with more than 70 partner universities all over the globe


Our students profit from all of it and most of them find an attractive job even before graduating.

LIGHTWEIGHT MATERIAL DEVELOPED BY NATURE OVER THOUSANDS OF YEARS OF EVOLUTION

From Microimaging-informed continuum micromechanics accurately predicts macroscopic stiffness and strength properties of hierarchical plant culm materials Tarun Gangwara, Dominik Schillingera, Mechanics of Materials January 8, 2019

WORKABILITY

Lathing / Drilling

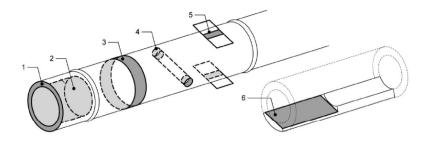
thread cutting

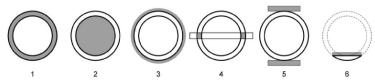
NATURAL MATERIAL

Roundness

APPLICATION PROBLEMS

Straightness


Mechanical Properties		
Young's modulus	from 7 473 to 60 000 MPa	
tensile strength	from 148 to 389 MPa	
Compressive strength	from 39 to 93 MPa	
Bending strength	from 76 to 276 MPa	
shear strength	about 20 MPa	
	the smaller the diameter,	
	the stronger	


Varying material properties

REQUIREMENTS

- lightweight
- damage to the bamboo stalk as small as possible
- automatable for small series

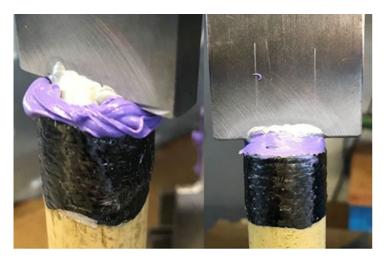
[1] R. Steffen, Geschossdecken aus Bambus, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, 2017.

Connection wrapped with hemp ropes

principles of connectors

bamboo wheels on the market - heavy nodal points

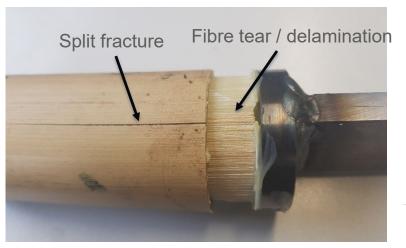
NEW APPROACH:

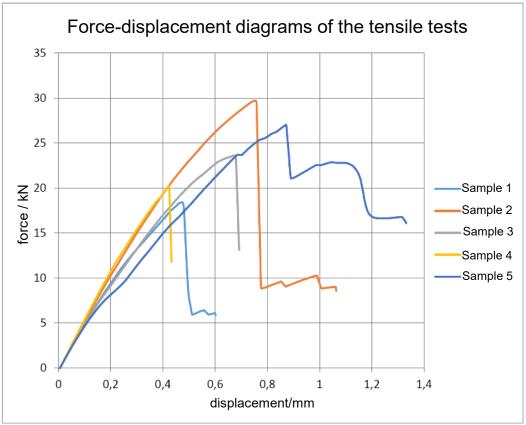

Drill out, glue in metallic connectors, wrap the ends to prevent splitting.

Drilled out culm

Connector & culm wetted with adhesive

Excess adhesive with filled chamber

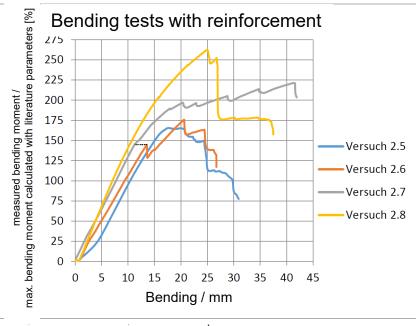

TENSILE TESTS OF THE CALMS

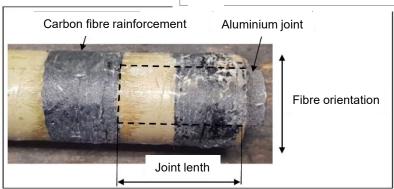


Nr.	D [mm]	d [mm]
1	45,1	36,25
2	45,75	36,85
3	46,4	36,9
4	44,85	36,3
5	46,65	37,7

diameter of the samples

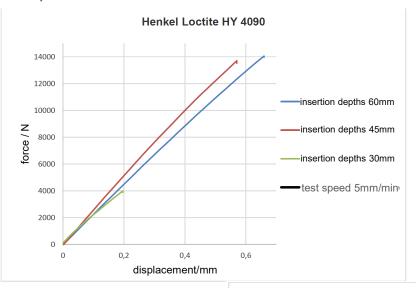
clamped sample

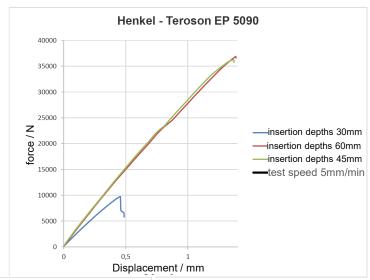

BENDING TESTS OF THE CALMS

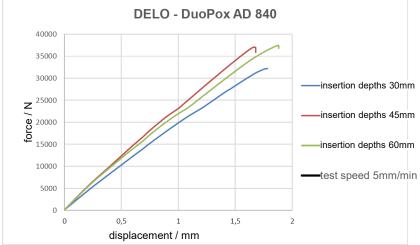


2-point bending test rig

split without reinforcement

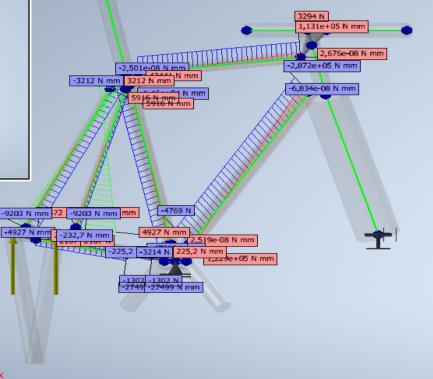



Reinforced tube end

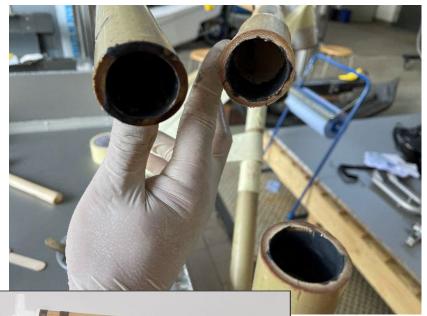


TENSILE TESTS OF THE ADHESIVE JOINT

Experiments with different adhesives and insertion depths of the tubes (outer calm diameter: about 30 mm)



Calculation of the stress on the culms



design

BUILDING

The finished frame weighs 3,140 g. The mass share of bamboo is 908 g, the steel connectors make up 2,060 g of the weight

6. DIN-EN-14764 Tests

Examination setup swayback

Test with a vertical force on the saddle mount

Impact test

7. CONCLUSIONS

- Experimental tests showed that bamboo possesses and exceeds the strength and lightweight construction properties described in the literature
- The tests provide a basis for the design and strength calculation of a bamboo calm construction.
- The developed method for joining bamboo tubes offers high strength and flexible options for joining bamboo tubes.
- It allows the transmission of high forces and moments
- It is automatable for small batch production and transferable to other constructions

THANK YOU FOR YOUR ATTENTION!

