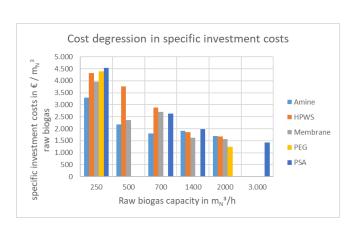


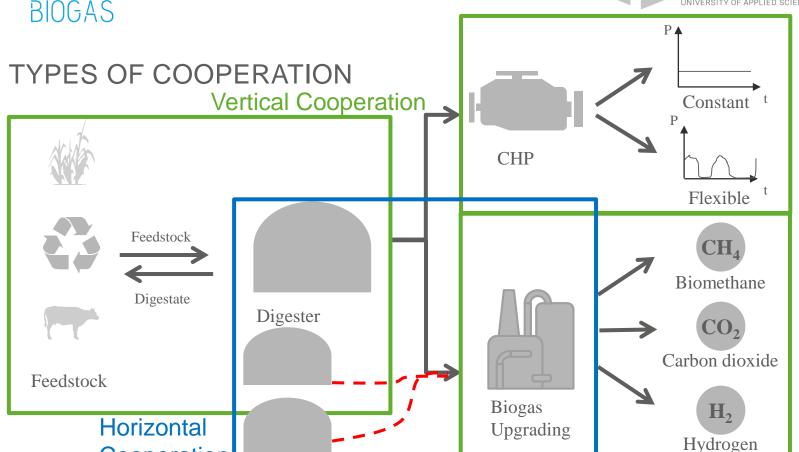
DRIVERS AND BARRIERS FOR THE DEVELOPMENT OF COOPERATIVE BUSINESS MODELS IN THE BIOGAS SECTOR FOR THE TRANSFORMATION OF THE ENERGY SYSTEM

IDEA

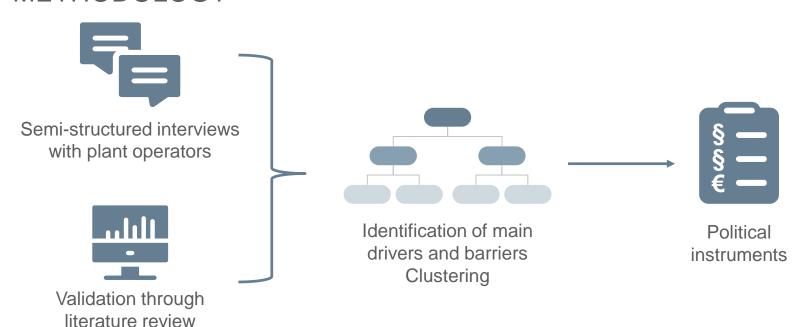
- Energy transition
- o Decentralization of power generation
- Requires new actors
- Integration through various approaches e.g. in cooperation in citizens' initiatives or cooperatives

- Existing biogas plants in Germany
- Expiry of feed-in tariff from Renewable Energy Sources Act after 20-years
- o Business model innovation is needed

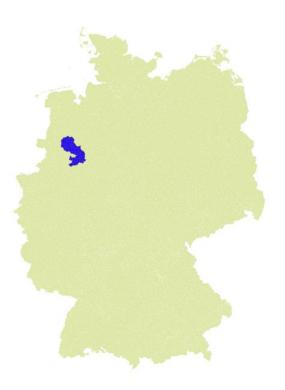

What are the main drivers and barriers for biogas plant operators to join cooperatives?

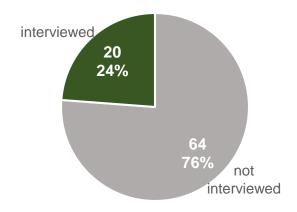

WHY COOPERATE?

- Existing cooperation culture in different industries
 - o Agriculture: essential importance for exploiting synergy effects
 - Renewable energy: citizens' cooperatives make a significant contribution to the participation of citizens in political, social and financial aspects of energy transition
- Motivation for cooperation
 - Enable implementation of certain business models
 - o Increase profitability by the exploitation of economies of scale
 - Synergy effects



METHODOLOGY




METHODOLOGY

- 20 semi-structured interviews
- Target group: Active biogas plant operators in the administrative district of Osnabrück
- 14 qualitative questions on the continued operation after the end of the feed-in-tariff with a focus on cooperative business models
 →If necessary supplemented by maintenance questions
- · Recording and transcription
- Evaluation and clustering of answers

RESULTS

33 % 50 % 67 % 100 %

0 %

Share of interviewed biogas plants

Share of interviewed biogas plants in municipalities

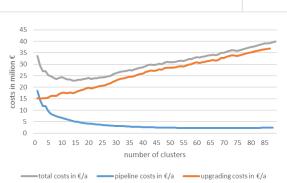
Plants according to size category:

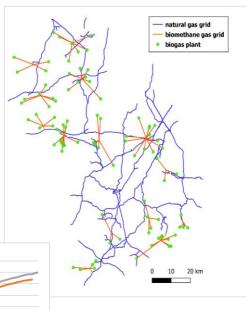
Installed capacity	Share
Up to 75 kW	13,8 %
Up to 500 kW	27,6 %
Up to 1 MW	24,1 %
Over 1 MW	34,5 %

Plants according to substrate use:

Substrate usage	Share
Share manure < 30 %	17,2 %
Share manure < 80 %	58,6 %
Share manure > 80 %	20,7 %
Other	3,4 %

Year of initial operation:





JOINT UPGRADING INFRASTRUCTURE

- Aim: optimal upgrading infrastructure based on investment costs for upgrading plants and pipelines
- Individual purification
 - Annual system costs: 39.87 million euros
 - o Even the smallest purification plants are significantly over dimensioned
- Joint purification
 - o Annual system costs: 22.82 million euros
 - Cost savings: 43 %
- Make use of spatial proximity of biogas plants
 - → Exploitation of cost degression

RESULTS – MAIN DRIVERS

Political & Legal	 Stimulating framework conditions Reduction of dependency on fossil fuels
Economic & Technological	 Expectation of synergies Planning reliability Access to new markets
Sociocultural	 Motivating, innovative environment Better use of capacities and strengths Strengthening regional value creation
Ecological	 Increase in plant efficiency Promotion of the circular economy

RESULTS – MAIN BARRIERS

Political & Legal	 Lack of political support Competition to other renewable energies Unfavorable regulatory environment
Economic & Technological	 Uncertainty about future development of energy markets Lack of flexibility due to longer-term contractual obligations
Sociocultural	 Cooperation with current competitor Cultural differences and lack of trust Acceptance by the general public
Ecological	 Use of monocultures Emissions from plant Pollution from transport

RESULTS

Drivers and Barriers	Action	
Uncertainty	Clear political framework Long-term contracts	
Social factors (lack of reliability and disagreement)	Include external partner →purchase agreements with the individual partners	
Expectation of synergy effects	Evaluitation	
Positive expectation of returns	Exploitation→ Information on the advantageousness of	
Responsibility for securing the energy supply	cooperation needs communication and initiators	

Thank you for your attention.

www.dbu.de 34663/01 Anica Mertins, M.Sc. University of Applied Sciences Osnabrück anica.mertins@hs-osnabrueck.de www.hs-osnabrueck.de/biogas

