@article{KokeModigell2003, author = {Johannes Koke and Michael Modigell}, title = {Flow behaviour of semi-solid metal alloys}, series = {Journal of Non-Newtonian Fluid Mechanics}, volume = {112}, number = {2–3}, doi = {10.1016/S0377-0257(03)00080-6}, pages = {141 -- 160}, year = {2003}, abstract = {Semi-solid metal alloys, as used in industrial thixoforming, have a special microstructure of globular grains suspended in a liquid metal matrix. The complex rheological properties are strongly influenced by the local solid fraction, particle shape, particle size and state of agglomeration. It was analysed how the microstructure develops in dependence of the shear rate and cooling rate during the solidification and it was observed that the average particle size increased with increasing shear rate and decreasing cooling rate. In order to account for those phenomena, the rate of crystal growth and the relationship between average particle diameter and viscosity was modelled by applying the Sherwood two-film model for the mass transport. The dependence of the viscosity from the particle size were modelled with a modified Krieger–Dougherty model. Based on the rheological and microstructural observations an evaluation method was elaborated that allows for the construction of objective master curves that are independent of the particle growth during the experimentation. The isothermal experiments for the characterisation of the rheological behaviour consisted of step-change of shear-rate and yield-stress experiments. From the experimental data the steady-state flow curves could be determined as well as the time-dependent relaxation of the shear stress after a change of shear rate. The steady-state rheological behaviour was found to be shear thinning. Nevertheless, immediately after a shear-rate change an overshoot was observed that resulted from a short-time shear-thickening behaviour. The yield stress was found to strongly depend on the microstructure and the degree of agglomeration of the solid phase. With increasing rest time the yield stress was increasing strongly, because of the agglomeration of the solid particles. Based on the step-change of shear-rate experiments a single-phase flow has been developed that consists of a modified Herschel–Bulkley approach and accounts for the thixotropic as well as for the yield-stress behaviour of the alloys.}, language = {en} }